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Abstract—The prevalence of cross-lingual speech emotion recognition (SER) modeling has significantly increased due to its wide
range of applications. Previous studies have primarily focused on technical strategies to adapt features, domains, and labels across
languages, often overlooking the underlying universalities between the languages. In this study, we address the language adaptation
challenge in cross-lingual scenarios by incorporating vowel-phonetic constraints. Our approach is structured in two main parts. Firstly,
we investigate the vowel-phonetic commonalities associated with specific emotions across languages, particularly focusing on common
vowels that prove to be valuable for SER modeling. Secondly, we utilize these identified common vowels as anchors to facilitate
cross-lingual SER. To demonstrate the effectiveness of our approach, we conduct case studies using American English, Taiwanese
Mandarin, and Russian using three naturalistic emotional speech corpora: the MSP-Podcast, BIIC-Podcast, and Dusha corpora. The
proposed unsupervised cross-lingual SER model, leveraging this phonetic information, surpasses the performance of the baselines.
This research provides insights into the importance of considering phonetic similarities across languages for effective language
adaptation in cross-lingual SER scenarios.

Index Terms—speech emotion recognition, domain adaptation, cross-lingual, transfer learning.

✦

1 INTRODUCTION

Effective generalized speech emotion recognition (SER)
holds significant capability across a wide spectrum of ap-
plications, spanning various domains, such as the devel-
opment of intelligent agents, social robots, voice assistants,
and automated call center systems [1]–[3], with applications
in healthcare, security, education, and entertainment [4].
Generalized SER demonstrates its effectiveness in diverse
cross-context scenarios such as cross-lingual, cross-corpus,
and cross-domain. Prior research has predominantly ap-
proached all cross-context challenges from a computational
perspective, often considering cross-lingual scenarios as
cross-corpus tasks by assuming language-agnostic contexts
[5]–[10]. However, cross-lingual tasks diverge from cross-
corpus cases, primarily because emotion perception and the
acoustic feature space are language-dependent [11], sug-
gesting that understanding the language-specific informa-
tion provides valuable insights for cross-lingual adaptation
strategies. The traditional approach to this problem has been
from the computational standpoint by considering this as
a data-matching issue and aiming to mitigate disparities
between the source and target domains. This perspective
might emerge due to constraints related to data availability
and the inclination to repurpose established methodologies.
To bridge these gaps, various techniques such as transfer
learning, semi-supervised learning, and few-shot learning
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have been widely employed to reduce the differences in
features, domains, or labels [8], [12]. Moreover, methods
such as Wasserstein distance optimization [13], adversar-
ial training [14], and the use of synthetic domain-specific
data generated through Generative Adversarial Networks
(GANs) [15] have been employed in the cross-context SER
modeling. While these computational approaches within the
cross-corpus framework have proven effective, they often
lack the integration of linguistic knowledge when address-
ing tasks with different languages that require cross-lingual
domain adaptation.

Rather than adopting a purely computational approach,
our perspective includes a linguistic dimension, anchor-
ing over universal attributes across different languages in
emotional contexts. Speech serves as the carrier for both
language and emotion. In cross-lingual scenarios, where the
goal is to transfer emotions from one language to another,
we contend that the anchor should be something universally
recognized, specifically, a linguistic structure, and more
precisely, phonemes. This choice is grounded in the fun-
damental concept that language is based on meaningful
units of sound, and phonemes, comprised of vowels and
consonants. Phonetically well-structured sounds contribute
valuable linguistic cues to spoken information [16], [17].
Prior studies have shown that emotional information can
be detected at the phonetic level [18], with specific emo-
tional patterns at this level exhibiting applicability across
various languages [19]. Moreover, vowel articulation plays a
significant role in conveying emotional content, as emotions
are often distinctly expressed through vowel sounds [20],
[21]. It has also been observed that vowel sounds hold more
significance in defining acoustic cues for emotions than
consonants [16], [17].

By leveraging these insights, we can enhance the gen-
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eralization of SER for cross-lingual cases, a concept effec-
tively demonstrated in our prior work [22]. In particular,
our earlier study illuminated the phonetic commonalities
that constitute the foundation of cross-lingual SER. Vow-
els, distinguished by their unique acoustic characteristics,
served as anchors for transferring emotions between dif-
ferent languages, conveying emotional subtleties that tran-
scend traditional method barriers. Our contrastive learning
approach uses these vowel commonalities as constraints
to mitigate variability between languages and enhance the
efficacy of cross-lingual SER. This previous study based
on phonetic anchoring showed that certain vowels exhibit
commonalities between the two languages specific to emo-
tions, revealing increased similarity between corpora after
emotion modulations. Here, we select anchors by training
the SER with vowel-specific segments to train the specific
emotion recognition model and comparing them across
corpora to identify vowels that provide better recognition
under that emotion category. These common-performing
vowels were used as anchor candidates, and implementing
the anchoring mechanism with these vowels led to im-
proved performance. This initial analysis provides insights
and better cross-lingual SER performance, supporting our
hypothesis. However, in our previous work, the anchor
selection method required additional model training, which
inherently demands a significant amount of data. When data
is limited, it becomes difficult to fully trust the model’s
performance. Thus, while our previous work demonstrated
some effectiveness, it also had limitations due to the need
for additional data and the challenge of model reliability.

In our current research, we extend upon our prior work
[22], introducing several novel aspects to our study. Firstly,
our previous work successfully emphasized the importance
of vowel commonalities in bridging linguistic disparities. In
this study, we delve deeper into phonetic common features
by expanding our analysis to encompass not only monoph-
thong vowels but also diphthongs. This addition allows
us to gain a more comprehensive understanding of vowel
behavior in emotion recognition. Secondly, we refine our an-
choring selection and mechanism more tied to the modeling
aspect. Given the prevalent use of large pre-trained models
(e.g., Wav2vec2.0) in SER for encoding emotional content,
our phonetic analysis also centers around this specific emo-
tional encoder to enhance its effectiveness. Lastly, we also
introduce an additional cross-attention mechanism into the
proposed architecture. This modification aims to provide
a more holistic comprehension of phonetic commonalities
and integrate them into the context of cross-lingual SER
scenarios for better language adaptation. Overall, our study
presents a novel attention-based phonetic-anchored domain
adaptation technique for cross-lingual SER, leveraging the
commonalities in vowels across languages to enhance our
transfer learning strategy for SER.

Specifically, we conduct a case study involving two con-
trastive languages: American English (an intonation-based
language) and Taiwanese Mandarin (a tonal language), uti-
lizing two extensive in-the-wild natural speech emotion
datasets, the MSP-Podcast (American English) and BIIC-
Podcast (Taiwanese Mandarin) corpora. The research is di-
vided into two primary segments: First, we investigate
the emotion-specific commonalities at the phonetic level,

analyzing phonological references (in terms of F1 v/s. F2
formants) and encoded feature representations for emotion-
specific vowels (using Wav2vec2.0). By extensively exam-
ining speech data across diverse emotional contexts, the
insights uncover the significant associations between partic-
ular vowel qualities and emotions, some of which are com-
mon across languages. These findings highlight the cross-
linguistic convergence in linking phonemes with emotions,
suggesting that, despite variations in emotional expression
across languages, there exist underlying patterns that tie
certain vowels to distinct emotional states, transcending
linguistic boundaries. Second, this study introduces an an-
choring mechanism to enhance cross-lingual SER by lever-
aging the phonetic commonalities identified earlier. The
anchoring mechanism is designed to exploit the common
behavior of vowel phonemes in the target languages and by
employing a contrastive formulation, we demonstrate the
effectiveness of this approach in improving cross-lingual
SER performance. Our proposed attention-based group-
anchored cross-lingual SER model (AGA-CL) achieves a
6.89% improvement in unweighted average recall (UAR)
for a 4-category SER task compared to models that do
not incorporate any domain adaptation technique (CL).
Our proposed approach is further validated on crosslingual
experiments for Russian, using the DUSHA corpus, demon-
strating consistent improvements. This significant enhance-
ment highlights the efficacy of our approach in leveraging
phonetic commonalities across languages to enhance the
performance of cross-lingual SER.

2 RELATED WORK

This paper approaches the topic from a linguistic perspec-
tive by examining emotion-specific vowel commonalities
in the context of unsupervised cross-lingual research. Re-
lated work in this paper is divided into two sections: the
first focuses on the computational study of cross-lingual
research, and the second on the emotional patterns observed
on vowels.

2.1 Computational Study Of Cross-Lingual Data

Unsupervised cross-lingual SER offered a promising way to
reduce the need for labeled data in the target domain, mak-
ing SER models more adaptable across languages. Existing
research explored various strategies [5], [8], [23]–[25]. Some
popular techniques included addressing source-target do-
main disparities through transfer learning, semi-supervised
learning, or few-shot learning [8], [12]. These methods
adapted models to the target domain using source domain
knowledge, reducing the need for labeled data. Another
approach used synthetic domain-specific data, generated
by methods like GANs or data augmentation [5], [13]–[15],
to improve emotion recognition by simulating target do-
main samples. Additionally, methods using pseudo-labeling
[25] treated cross-lingual SER as a multi-label classification
problem by utilizing unsupervised techniques to overcome
limited labeled data challenges in target domains. These
strategies offered computational solutions for cross-lingual
SER.
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2.1.1 Addressing Disparities Of Source and Target

Addressing the disparities between the source and target
domains in cross-lingual SER tasks was a common focus
in the literature. The transfer learning approach was a
widely used approach that leveraged knowledge learned
from a source language to enhance performance in a target
language [6], [7]. Another avenue for improving model
generalizability was through the integration of multi-task
learning, where additional information such as gender and
naturalness was incorporated into the learning process [23].
Alternatively, few-shot learning had been proposed, specifi-
cally adapted to the target domain by enabling the model to
learn emotions from source domain samples [8]. However,
few-shot learning faced challenges in practical applications
due to the reliance on selecting a suitable support set and the
effectiveness of few-shot learning was highly dependent on
the composition and quality of the support set, introducing
complexities and limitations in real-world scenarios [26].
Additionally, self-supervised learning had been explored as
a means to bridge the gap between the source and target
domains by leveraging the inherent structure and patterns
within the data [10].

2.1.2 Leveraging Adversarial Networks

In cross-lingual SER, another popular direction is to uti-
lize adversarial-based methods, which leveraged domain
adversarial training to learn representations that were in-
variant across different language corpora. For instance,
a Generative Adversarial Network (GAN)-based method
was proposed by Latif et al. [5] for unsupervised domain
adaptation in multilingual SER, enabling the learning of
language-invariant feature representations from source to
target languages. However, GANs often faced challenges
in training and were prone to convergence failures [27]. In
contrast, Abdelwahab and Busso [24] proposed a Domain
Adversarial Neural Network (DANN) approach, which
aimed to generate a domain-invariant feature representation
that minimized the discrepancy between source and target
domain features . However, the effectiveness of domain
adversarial training heavily relied on the distribution of
the two databases, and adversarial attacks and instabilities
could arise during training when the data points exhibited
significant dissimilarities [28].

2.1.3 Employing Pseudo Labelling

Unsupervised cross-lingual SER has also been approached
as a multi-label classification problem in the literature by
drawing inspiration from ensemble learning [29]. This learn-
ing strategy combined decisions from multiple related emo-
tion features to reduce the impact of individual emotion
labels and enhance the robustness of the model. Further-
more, dynamic external memory was designed to store and
update the source domain features effectively, ensuring that
all samples from the source domain were utilized during
training. The features from the source domain were then
stored in the dynamic external memory. Pseudo multi-labels
were assigned to the target domain data by calculating the
similarities between the features in the dynamic external
memory and the features in the target domain.

2.2 Affective Study Of Vowels Behavior

Numerous linguistic studies have underscored the behav-
ior of vowel phonemes in conveying emotions and their
contribution to the expression of distinct emotional states
due to their unique characteristics [20], [21], [30]. There is
substantial evidence supporting robust phoneme-emotion
correspondences, which are likely universal [31]. However,
some linguistic research has shown that these phoneme-
emotion associations can be language-specific [32]. Vowels,
due to their distinctive acoustic properties, are recognized
as key elements in speech that effectively encode and
transmit emotional nuances [16], [17], [33]. This perspective
motivates the investigation of vowel behaviors to unlock
the potential of more generalized and language-adapted
emotion recognition systems.

2.2.1 Emotion-Specific Vowel Behavior
Several studies have highlighted the significance of vowels
in expressing emotional content, with various investiga-
tions exploring the connection between specific vowels and
emotions [17], [18], [34]. Insights from psychology suggest
that emotions may not solely be conveyed through entire
words but also through individual sounds or phonemes.
This perspective leads to the intriguing observation that the
prevalence of /i/ sounds in positive emotions and /o/ and
/u/ sounds in negative emotions, observed across various
languages, appears linked to the concurrent activation of
specific facial muscles [34]. Studies investigating the relation
between sound and linguistic meaning provide substantial
evidence of an implicit connection between the articulatory
and acoustic properties of vowels and emotions [35], [36],
using analyses of vowel formant frequency and formant
dispersion. Specifically, extremes in vowel acoustic features
have emerged as significant predictors for discerning emo-
tional tone [35]. Other studies [36] suggest that perceived
emotion from specific phoneme combinations relies on their
inherent acoustic features. An articulatory and acoustic
analysis of Mandarin Chinese vowels [37] highlighted the
emotional sensitivity of the /a/ vowel, with greater F1
values observed in emotional states such as happiness and
anger, and smaller F1 values in sadness and neutral states.
Additionally, emotional states of happiness and anger ex-
hibited larger vocalic triangles compared to neutral and
sadness, aligning with findings in English-language studies
[38]. These findings suggest the presence of vowel-specific
acoustic attributes influencing human emotions.

2.2.2 Vowel-Specific Emotion Encoding
Many studies have emphasized that vowels can serve as
distinct markers closely associated with specific emotional
states in language. Some investigations reveal a strong
correlation between the positions of average F1/F2 values
extracted at the vowel level and the speaker’s emotional
arousal and valence values [39], [40]. Notably, Shah et al. [40]
suggest that incorporating articulatory information signifi-
cantly enhances valence-based classification performance for
both within-corpus and cross-corpus emotion recognition,
particularly effective in distinguishing happiness from other
emotional states. Approaches like employing phoneme-
class-dependent emotion classifiers [18] and utilizing deep
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TABLE 1: Statistics of the corpora used in this study.

Overall neu hap ang sad

MSP-P 49018 25467 2773 15821 4957
BIIC-P 18980 7933 6000 2763 2284

models fine-tuned with emotion-dependent phoneme tran-
scriptions [17] have shown effectiveness in enhancing emo-
tion recognition. Several studies in emotion recognition
have also adopted a vowel-centric approach, consistently
supporting that among various speech units, the vocalic
nucleus is most perceptually significant [17], [19], [33].

Conversely, there is a growing body of research explor-
ing sound-meaning associations [41], and sound symbolism
[42], which have been observed across multiple languages.
This suggests that certain vowels may consistently con-
vey emotional connotations across diverse languages. These
emotionally significant vowels can function as connectors
that facilitate cross-lingual emotion recognition. Recent in-
vestigations have aimed to bridge the gap between linguistic
analyses of vowels and the practical applications of this
knowledge in the context of cross-lingual SER. For instance,
our previous work [22] has illuminated the potential of
phonetic commonalities, specifically focusing on vowels, to
serve as bridges between languages in emotion recognition.
Emerging insights from these related studies underscore
the advantages of integrating linguistic knowledge when
dealing with cross-lingual SER. This approach broadens
the perspective on cross-lingual SER, extending beyond the
computational viewpoint and encompassing linguistic con-
siderations. We facilitate the enhancement of cross-lingual
SER systems in their adaptation to the target language
by gaining an understanding of the language’s phonetic
characteristics specifically the Vowels that are specific to each
language but share some commonalities, and implementing
mechanisms to align these phonetic elements.

3 CORPORA

This work considers the MSP-Podcast [43] and BIIC-Podcast
[22] SER corpora to evaluate our proposed idea. The MSP-
Podcast and BIIC-Podcast corpora have undergone meticu-
lous annotation by human raters, ensuring the availability
of accurate emotion labels as ground truth. These corpora
serve as valuable and trustworthy resources for training and
evaluating SER models, allowing researchers to assess the
efficacy and applicability of their proposed methodologies.
Table 1 provides an overview of the sample counts drawn
from both corpora for this study.

3.1 MSP-Podcast Corpus
The MSP-Podcast (MSP-P) corpus [43] is used as a bench-
mark for our research, as it comprises a total of 166 hours
of emotional speech in American English (v1.10). It is in-
creasingly being used for research on SER due to its scale
and availability of emotionally balanced dialogues from
multiple speakers. These speech samples were collected
from podcast recordings available on various audio-sharing
websites. Each sample in the corpus is annotated by at
least five different workers with primary emotions (neutral,

(a) MSP-Podcast (b) BIIC-Podcast

Fig. 1: Considered vowels in vowel space (F2 v/s. F1 for-
mants) of MSP-P and BIIC-P corpora.

happiness, anger, sadness, disgust, contempt, fear, and surprise),
secondary emotions, and emotional attributes (arousal, va-
lence, and dominance). To examine the phonetic components
of the MSP-P corpus, we employed the Montreal Forced
Aligner (MFA) [44]. The MFA is particularly valuable as it
offers precise boundary alignments for phones, using the
ARPABET notation. To ensure consistency across languages,
we utilize the International Phonetic Alphabet (IPA) [45],
a widely recognized standard in linguistic research, for
phonemic symbols. This conversion process was executed
following a well-established mapping by Rice [46]. By em-
ploying this mapping, we ensured that the phones extracted
from the MSP-P corpus were represented in a phonetically
accurate and standardized manner, facilitating our subse-
quent phonetic analysis and comparison across languages.

3.2 BIIC-Podcast Corpus

We use the BIIC-Podcast (BIIC-P) corpus [22] for evaluating
our idea on cross-lingual SER tasks. It consists of speech
samples extracted from Taiwanese Mandarin language. Each
sample in the BIIC-P corpus is annotated with emotional
labels, with each sample having between 3 to 6 annotations
available. The emotional annotations cover eight primary
emotional categories, namely neutral, happiness, anger, sad-
ness, disgust, contempt, fear, and surprise. Additionally, the
dataset includes 7-point Likert scale labels for arousal, va-
lence, and dominance. Manual transcriptions are available for
all samples in the corpus. For this research, we utilized
approximately 137 hours of data from the BIIC-P corpus
(v.1.0). To facilitate further phonetic analysis and phonetic-
anchored SER modeling, we first train a Taiwanese Mandarin
forced aligner using the Formosa [47] corpus. This aligner
allows us to align the speech samples to their correspond-
ing phonetic segments. The phonetic segments are then
converted to IPA phonemic notation using the mapping
provided by Liao et al. [47].

4 PHONETIC COMMONALITY ANALYSES

This section explores the estimation of vowel common-
alities in both the MSP-P and BIIC-P corpora. Based on
the language phonetic universality fact, understanding the
common vowels (monophthongs and diphthongs) across
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(a) neutral-Mono (b) happiness-Mono (c) anger-Mono (d) sadness-Mono

(e) neutral-Diph (f) happiness-Diph (g) anger-Diph (h) sadness-Diph

Fig. 2: Visualization of monophthongs and diphthongs vowel polygons representing the vowel space for the emotions
neutral, happiness, anger, and sadness across the MSP-P and BIIC-P corpora.

emotions and languages can greatly enhance the effective-
ness of SER systems in accurately detecting and classifying
diverse emotions across languages. To explore these com-
mon vowels, we conduct a comprehensive analysis utilizing
two distinct corpora (MSP-Podcast and BIIC-Podcast) from
different perspectives. Firstly, we explore the conventional
formant-based vowel spaces to find potential commonalities
across the corpora. Subsequently, we also examine vowel
correlations within the context of Wav2vec2.0 [48] which
plays a crucial role in our SER modeling effort.

In this analysis, we utilize a limited amount of labeled
data from the validation sets of both corpora, specifically
using 500 labeled samples for each emotion category from
both the source and target datasets. This allows us to
analyze the behavior and select vowels as anchors based
on their commonalities across the corpora. Importantly, no
emotional labels from the target set are used during training,
which is why our method is referred to as unsupervised
cross-lingual transfer learning.

4.1 Formant-Based Phonetic Analyses

We conduct a vowel space analysis of both corpora by using
their formants. This analysis is carried out both holisti-
cally and on an emotion-specific basis to identify common
vowels between the MSP-P and BIIC-P corpora. In our
prior research [22], we concentrated solely on monophthong
vowels. In this study, we broaden our perspective by in-
corporating diphthongs to facilitate a more comprehensive
utilization and understanding of vowel phonemes.

Vowel Space Commonalities: The vowel space, depicted in
Fig. 1, provides a visualization of the F1 vs. F2 plots for the

speech samples across various emotions. Upon examining
Fig. 1, it is evident that the English vowel /u/ appears
to be high-fronted, which aligns with findings reported in
[22], [49]. This discrepancy in vowel placement could be
attributed to factors such as variations in gender ratios
or dialects among the speakers. Notably, the placement
of this vowel differs in BIIC-P compared to MSP-P. Over-
all, Figure 1 demonstrates similar vowel characteristics in
English and Mandarin. The plots indicate that the set of
common vowels chosen for analysis spans a substantial
portion of the F1-F2 space, and their positions align with
the expected placement discussed in existing literature [50]–
[52]. By examining Figure 1, we can observe certain visible
commonalities in vowel distribution across corpora. For
instance, vowels /i/ and /@/ exhibit similarity regions in
their respective languages. This observation suggests the
presence of vowel commonality between English and Tai-
wanese Mandarin.
Specific-Emotion Vowel Space Commonalities: Fig. 2
presents a comprehensive visualization of the average F1
and F2 values for four emotional classes: neutral, happiness,
anger, and sadness. The data depicted in Fig. 2 have been
subjected to Nearey normalization [53] to eliminate speaker-
related variations arising from differences in vocal tract
characteristics and gender. Specifically, Fig. 2 highlights
the vowel distances observed in neutral speech, revealing
that the closest distances across languages for correspond-
ing vowels occur between /i/ and /@/. This consistent
trend holds true across all four emotional categories. These
emotion-specific vowels exhibit commonalities across both
languages, making them potential candidates for serving as
anchors in our transfer learning strategy.
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(a) happiness (b) anger (c) sadness

Fig. 3: t-SNE visualization illustrating the Wav2vec2.0 fea-
ture representations of vowels across both the MSP-P and
BIIC-P corpora for the emotions being studied.

In Figure 2, we encircle in green those vowels that exhibit
closer distances across languages for happiness, anger, and
sadness compared to neutral (e.g., the distance between /E/
across languages is smaller for happiness than for neutral).
These highlighted regions provide valuable insights into
vowels that consistently display similar responses across
languages when emotions are present.

This formant-based phonetic analysis uncovers the signif-
icance of identifying vowel commonalities as key anchor
points for our transfer learning approach in cross-lingual
SER. The visualizations shown in the plots help us to
identify vowels that consistently demonstrate similar be-
havior across languages. This knowledge contributes to
more precise and reliable emotion recognition in diverse
linguistic contexts. Building upon these observations, our
next objective is to determine the vowel anchors that are
optimal for expressing specific emotions and are common
between the two languages.

4.2 Wav2vec2.0 Phonetic Commonality

Numerous investigations have explored the connection be-
tween Wav2vec2.0, a widely-used self-supervised speech
model, and phonemes, which serve as the fundamental
building blocks of speech. These studies offer valuable
insights into the model’s learning process and its represen-
tation of phonetic information, providing a deeper under-
standing of both end-to-end speech recognition models and
self-supervised speech models. Notably, previous research
has demonstrated a strong correlation between the learned
representations of Wav2vec2.0 and phonemes, suggesting
that the model’s encoder can acquire phonetic information
in an unsupervised manner [54], [55]. Furthermore, some
studies have shown that pre-trained Wav2vec2.0 embed-
dings contain valuable phonetic information related to the
manner and place of articulation [56], [57]. This finding
is significant as it implies that these embeddings can be
effectively utilized in various downstream tasks, including
automatic speech recognition, speaker identification, and
SER. Consequently, the ability of end-to-end models like
Wav2vec2.0 to recognize speech without explicit phonetic
supervision sets the foundation for the development of more
efficient and accurate systems for SER.

To understand the degree of similarity in the Wav2vec2.0
features between MSP-P and BIIC-P samples in the context

of vowel phonemes, we conducted an analysis by examin-
ing their vowel-centered feature closeness. To gain insights
into the emotional samples present in the utilized corpora,
we fine-tune the Wav2Vec2.0 model on both the BIIC-P
and MSP-P datasets together for the emotion recognition
downstream task. This approach ensures that both datasets
are represented in the same feature space, facilitating a
more accurate comparison. We then utilize the final layer
of the fine-tuned Wav2Vec2.0 model to extract features.
To estimate the phoneme-centered features, we segment
these features by taking a 120ms window on either side of
the phoneme’s center time frame, considering this as the
phoneme-specific segment features, following the chunk-
based method outlined in [58]. These features are subse-
quently used to generate t-SNE plots for visualization.

Fig. 3 presents the t-SNE visualization for monoph-
thongs vowels, depicting the Wav2vec2.0 feature repre-
sentations of vowels across both the MSP-P and BIIC-P
corpora for the emotions under investigation. These plots
illustrate the presence of vowel clusters that demonstrate
closer proximity across these two distinct language cor-
pora. For instance, when we analyze the corpus vowel sets
containing /i/ (msp i and biic i), we notice some level of
closeness in all the plots. Similarly, we can observe varying
levels of closeness, whether high or low, between all corpus
vowel phoneme clusters presented in Fig. 3. Furthermore,
they reveal that certain vowels exhibit different levels of
similarity in particular emotions. For example, in the context
of happiness, we observe that the vowel sets of /i/ (msp i
and biic i), as well as /A/a/ (msp A and biic a) cluster
closely together. Similarly, in the case of anger, the vowel
sets of /A/a/ (msp A and biic a) and /O/ (msp O and
biic O), appear to be more closely related. These patterns of
vowel cluster closeness can be observed across all emotions,
although they are somewhat less pronounced in the case
of sadness. In this paper’s representation, we only show
the feature closeness for monophthong vowels but we also
observe similar insights for diphthong vowels.

5 ANCHOR CANDIDATES SELECTION

There are distinct ways to select vowel anchor candidates
from a set of common vowels across two languages. On the
one hand, a straightforward approach is to consider basic
vowel-space formant commonalities as selection criteria.
However, this may not be the most efficient method given
that modern SER models often use more complex features,
not just basic ones, sometimes encoded from advanced mod-
els like Wav2vec2.0. As demonstrated in our previous work
[22], we adopted a feature-centric strategy that engaged in
vowel-centered emotion-specific modeling. This approach
allowed us to identify vowels that prominently contribute
to the expression of specific emotions while exhibiting
consistent behavior across both languages. Although this
approach has its limitations, such as potential accuracy
issues with the model and the need for sufficient labeled
training data, in our current study, we opt for a more direct
approach. We utilize vowel-centered feature distances and
similarities to pinpoint vowels displaying emotion-specific
behavior across languages. Among the various strategies for
anchor selection, we favor this approach due to its simplicity
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TABLE 2: Similarity and distance metrics across common
vowels in both corpora, specific to each emotion and mea-
sured in terms of cosine similarity (CS) and Euclidean
distances (ED) and the combined score (Com).

Mono Diph
/i/ /E/ /@/ /A,a/ /O/ /u/ /aI/ /eI/ /aU/ /oU/

ne
u

CS 0.96 0.87 0.85 0.97 0.93 0.81 0.81 0.85 0.86 0.87
ED 2.01 3.21 3.68 2.45 2.12 3.91 4.01 3.98 3.91 3.28

Com 0.81 0.67 0.62 0.78 0.79 0.58 0.57 0.59 0.60 0.66

ha
p

CS 0.96 0.89 0.92 0.96 0.86 0.79 0.92 0.91 0.88 0.83
ED 2.21 3.04 2.24 2.26 3.33 3.47 3.24 3.16 4.21 4.66

Com 0.80 0.69 0.77 0.79 0.65 0.61 0.69 0.68 0.59 0.53

an
g

CS 0.86 0.92 0.93 0.94 0.81 0.79 0.89 0.94 0.92 0.81
ED 3.97 2.96 3.02 2.78 3.58 3.73 4.02 3.04 3.15 3.49

Com 0.60 0.71 0.71 0.74 0.61 0.58 0.61 0.72 0.70 0.61

sa
d

CS 0.91 0.91 0.84 0.91 0.93 0.82 0.84 0.83 0.89 0.88
ED 3.64 3.02 3.77 3.25 2.81 3.67 5.36 5.62 4.19 4.98

Com 0.65 0.70 0.61 0.68 0.73 0.60 0.47 0.45 0.60 0.53

in estimation, not requiring extensive memory or a large
number of labeled samples.

To choose suitable vowels for the proposed anchoring
mechanism of our study, we use Wav2vec2.0 features for
training. We compute multidimensional distances based on
vowel-centered feature representations from both corpora.
This estimation of multidimensional distances of common
ground vowels is performed using the Cosine Similarity
(CS) and Euclidean Distances (ED), allowing us to capture
the closeness in terms of similarity and distance metrics
across different emotions. Table 2 presents the results of the
emotion-specific multidimensional CS and ED for common
vowels in both corpora. In the process of selecting anchor
candidates based on the metrics (CS and ED), our objective
is to achieve a low ED and high CS to identify closer vowels.
To make both metrics comparable, we start by normaliz-
ing the ED values within the range [0, 1], referred to as
EDnorm. Subsequently, we apply an inverse transformation
to the normalized ED values (EDinv) using Equation 1 and
compute an average score using CS and the transformed
ED scores. This average score is referred to as the combined
score (Com), as shown in Equation 2. The candidates chosen
for the anchoring strategy, as shown in Table 3, are selected
based on these combined scores.

EDinv = 1− EDnorm (1)

Com =
CS + EDinv

2
(2)

There can be several possible approaches for anchor
selections. One option is to choose the best anchor, which
exhibits more feature similarity compared to other vowels.
However, based on our previous work [22] discussions, it is
apparent that opting for a group of top anchors can yield
better SER performance. This approach is more rational
than selecting a single vowel as an anchor because, from
the perspective of speech production, emotional speech
cannot be exclusively associated with a single vowel. For
our subsequent experiments, we have chosen both the best
anchors (BA) and group anchors (GA). These vowel anchors
are selected based on the ranked combined scores for both
monophthongs and diphthongs for each emotion. For BA,
we pick the top-ranked vowels, and for GA, we select the

TABLE 3: Anchor vowel candidates selected for the pro-
posed anchoring mechanism based on their higher cosine
similarity (CS) and smaller Euclidean distances (ED) among
common vowels in both corpora. The anchor candidates
include Best Anchors (BA), Worst Anchors (WA), and Group
Anchors (GA), which represent the vowels with the best,
worst, and group-wise closeness in terms of vowel feature
similarity.

Mono Diph
BA WA GA BA WA GA

neu i @, u i, A/a, O oU aI oU, aU

hap i O, u i, @, A/a aI oU eI, aI

ang A/a O, u A/a, @, E eI oU eI, aU

sad O @, u E, O, A/a aU eI aU, oU

top 50% of vowels present from both monophthongs and
diphthongs, separately. To comprehensively evaluate the
performance of our method, we have incorporated the worst
anchors (WA) in our experiment. These WA represent the
lowest-ranked vowels. Regarding the WA, we observe that
the vowel /u/ consistently ranked at the bottom for all
emotion candidate selections. To have a better comparison,
we also included the second lowest-ranked vowels in our
analysis. Table 3 shows the anchor candidates included in
the BA, WA, and GA sets which, respectively, represent
vowels with the highest, lowest, and group with the utmost
closeness in terms of vowel feature similarity. For exam-
ple, in happiness, /i/ is selected as BA, /O/ and /u/ as
the WA, and /i/, /@/, and /A/a/ are considered as GA
for the monophthongs (Mono) category. Similarly, in the
diphthongs (Diph) category, /aI/ is selected for BA, /oU/
is selected for WA, and /eI/ and /aI/ are selected for GA.

Once the Anchor candidates have been selected, the
subsequent step is to implement the vowel phonemes-based
anchoring mechanism within the cross-lingual SER model-
ing framework.

6 CROSS-LINGUAL SER MODELLING

This study evaluates the performance of SER models that
leverage vowel phoneme commonalities across languages.
In Section 4.1, our analyses yield preliminary evidence
suggesting that specific vowels exhibit phonetic common-
alities following emotional modulation in both American
English (MSP-P) and Taiwanese Mandarin (BIIC-P) languages.
Motivated by these findings, we propose an anchoring
mechanism to incorporate the phonetic constraint into our
cross-lingual modeling approach, as illustrated in Fig. 4.
Our cross-lingual SER framework consists of two branches:
(1) the conventional emotion classification branch, which
focuses on accurately classifying emotions, and (2) the
phonetically-anchored domain adaptation branch, which
integrates the phonetic anchor-based constraint in learning.

6.1 Emotion Classification Branch

We utilize a 768-dimensional Wav2Vec2.0 feature vector [48],
derived from phoneme-level segmentation [58], as detailed
in section 4.2. Subsequently, these acoustic features are fed
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Fig. 4: Proposed phonetic-based unsupervised SER architecture.

into a transformer-based encoder network to produce self-
attention hidden embeddings, serving as a conventional
SER network in our proposed approach. Before performing
phoneme-centric segmentation and passing the Wav2Vec2.0
features to our transformer-based network, we introduce
a novel element in the model architecture: cross-phonetic
attention. This addition enables information transfer from
the target corpus to the source corpus before any processing
of the Wav2vec2.0 features, enhancing the model’s capa-
bilities. We take it as a crucial step, particularly in the
initial stage where the features primarily have phoneme-
related information as it is extracted from the pre-trained
ASR model (e.g., Wav2vec2.0). By applying cross-phonetic
attention, we aim to enhance the alignment and transfer of
phonetic knowledge from the target corpus to the source
corpus. This similarity enables the model to benefit from
the specific phonetic characteristics and nuances present in
the target language, leading to improved performance in
cross-lingual SER. Later these features are utilized in the
domain adaptation branch. Here, Wav2Vec2.0 is used solely
as a feature extractor without fine-tuning, while all other
model parameters, including those in the transformer-based
network, are updated during SER training. The classification
loss is defined by Equation 3, and it serves as a means to
optimize the model during training.

Lemo = EXS ,yS
[CE(T (XS), yS)] (3)

where CE is the cross-entropy function, T is the transformer
function, XS is the source features, and yS is the emotional
labels.

6.2 Vowel-Based Anchoring Mechanism
The phonetic-anchored domain adaptation branch incorpo-
rates an anchoring mechanism to establish a connection
between the two corpora by leveraging phonetic knowledge

as a constraint. This constraint aims to exploit the similarity
between the two languages for certain phonetic units, re-
sulting in improved regularization. Our approach utilizes a
triplet loss function for this purpose. Specifically, the vowel
segments corresponding to specific emotions in the target
domain are considered as anchors. The vowel segments
from the source domain for the same set of vowels, but
with the intent of transferring emotion-specific knowledge,
are treated as positives. Conversely, the vowel segments
from the source domain for the same set of vowels but with
different emotions serve as negatives.

Using these anchors, positives, and negatives samples,
we calculate the triplet loss to match the source and target
domain to integrate the vowel similarity as a constraint in
cross-lingual SER learning. This adaptation loss is calculated
using Equation 4,

Ladapt =
∑N

i [d(f(Xi
tGph), f(Xi

spGph))− d(f(Xi
tGph), f(Xi

snGph)) + α] (4)

where d represents the Euclidean distance function, f(Xi
tph)

is the feature representation for the target domain, and
f(Xi

spph)) and f(Xi
snph) are the positive and negative feature

representations of the source domain for the same vowel set,
respectively. α represents the margin. The complete loss is
calculated using Equation 5,

Ltotal = Lemo + λ ∗ Ladapt (5)

where Lemo and Ladapt are the losses for the emotion clas-
sification and domain adaptation tasks. Here, the parameter
λ is set to the constant value of 0.5.

7 EXPERIMENT RESULTS AND ANALYSES

7.1 Experimental Settings
7.1.1 Parameters
To optimize the model, we utilize the Adam optimizer
combined with a stochastic gradient descent algorithm. The
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TABLE 4: The table presents the performance results (in
terms of UAR, averaged over 10 runs) of the considered
baseline models for both 4-category and binary emotion
SER. It includes the statistical test over the baseline models
and the proposed AGA-CL (“Our”) model performances,
denoted by asterisks (* for p < 0.1, ** for p < 0.05, *** for p
< 0.01).

4-CAT neu hap ang sad

M
→

B

GAN [59] 56.91** 67.65 69.20** 66.75*** 61.23***
NMF [7] 55.68** 65.21 67.13** 65.34*** 65.19***

Ensemble [6] 53.90** 64.10* 67.00*** 61.05*** 65.77***
Few-shot [8] 54.32*** 65.26 58.92** 68.13*** 67.26***

Our 58.14 66.88 71.08 74.63 69.29

B→
M

GAN [59] 53.33** 62.31 59.64*** 61.22** 55.60**
NMF [7] 51.15** 61.18 56.36** 56.77** 53.12***

Ensemble [6] 52.18** 62.29 54.67*** 54.90*** 53.00***
Few-shot [8] 53.62** 60.34 58.29*** 58.61** 57.71***

Our 55.49 61.13 60.98 61.34 60.05

learning rate is set to 0.0001, and a decaying factor of 0.001
is applied to enhance the training process. The models
undergo training for a maximum of 70 epochs, utilizing a
batch size of 64. Early stopping is implemented to prevent
overfitting during training. The SER models are trained
for both multi-class classification (using 4 primary emotion
categories) and binary classification (for emotion-specific
modeling). The cross-entropy loss function and the triplet
loss function for anchoring mechanism implementation are
employed as the cost function and the evaluation metric
used is the unweighted average recall (UAR). To evaluate
our proposed idea, we partition the given corpora into
predefined train-validate-test splits for training, validating,
and testing.

7.1.2 Experiment Models
Baseline Experiments: In our research, we evaluate the
performance of our proposed approach by comparing it to
several existing methods used as baselines. The first baseline
method is GAN, proposed by Su et al. [59]. It utilizes adver-
sarial learning and a multi-source GAN framework to trans-
fer emotion-related information across different corpora.
Another method based on Non-negative Matrix Factoriza-
tion (NMF), is employed for transfer subspace learning in
SER, as described by Luo et al. [7]. Additionally, we consider
ensemble learning as presented in the work of Zehra et al.
[6], which we refer to as Ensemble. It combines predictions
from multiple models trained on diverse corpora to enhance
recognition accuracy and robustness in cross-lingual scenar-
ios. Moreover, we include the few-shot learning approach
proposed by Ahn et al. [8] that addresses the limited avail-
ability of labeled data in the target corpora by leveraging
knowledge from the source corpora and adapting the model
to the target domain. We refer to this method as Few-shot. By
comparing the performance of our proposed method against
these baselines, we can thoroughly assess its effectiveness
and potential for improving cross-corpus SER.
Ablation Experiments: To gain a comprehensive under-
standing of the proposed approach, the AGA-CL (Attention-
based Group-Vowel-Anchored Cross-Lingual SER) model
and its variants, we conduct a series of ablation experiments
to analyze the effectiveness of different components. These

experiments include the Group-Vowel-Anchored (GA-CL)
approach, which utilizes a group of vowels (GA) that ex-
hibits better behavior across the corpora, the Best-Vowel-
Anchored (BA-CL) approach, which selects the most well-
behaving vowel (BA) across the corpora, and the Worst-
Vowel-Anchored (WA-CL) approach, which examines the
performance using the least well-behaving vowel (BA)
across the corpora. These ablation methods are applied to
both monophthongs (Mono), diphthongs (Diph), and a com-
bination of both (Both) cases. Through these experiments,
we aim to assess the impact of different vowel selection
strategies on the overall performance of the AGA-CL model
in cross-lingual SER tasks.

7.2 SER Performance Comparison

7.2.1 Baseline Comparisons
Table 4 illustrates the results obtained from the SER models
that are trained and tested using different combinations of
corpora, considering different baseline models mentioned in
Section 7.1.2. The table provides a comprehensive overview
of the model performance (average over 10 runs) for each
experimental setup. For instance, the M→B experiment
represents the cross-lingual scenario where the model is
trained on the MSP-P and tested on the BIIC-P, while B→M
indicates the reverse setup with the BIIC-P as the source
and MSP-P as the target. Upon analyzing the table, we
can observe that our proposed model, AGA-CL, exhibits
significant improvements compared to the baselines for
both the 4-category (4-CAT) and binary (neu, hap, ang, sad)
SER models. For 4-CAT, AGA-CL achieves a higher UAR
with an increment of 1.23% and 2.16% on the M→B and
B→M tasks, respectively, outperforming the GAN model.
Moreover, AGA-CL surpasses the NMF and Ensemble ap-
proaches, achieving improved UARs of 2.46% and 4.24%
on the M→B task and 4.34% and 3.31% for the B→M task,
respectively. Additionally, when compared to the Few-shot
technique, AGA-CL achieves a UAR improvement of 3.82%
and 1.87% on the M→B and B→M tasks, respectively. When
comparing binary tasks, our method outperforms baselines.
For instance, in the M→B task, it achieves superior results
with 71.08%, 74.63%, and 69.29% for hap, ang, and sad. In
the B→M task, it attains 60.98%, 61.34%, and 60.05% for the
same emotions. For neu, although our model’s performance
is not the highest, it remains competitively strong, reaching
66.88% and 61.13% for the M→B and B→M tasks, respec-
tively.

We conduct statistical tests to evaluate the significance
of performance differences between our proposed model
and the baseline models. Paired t-tests are computed for
this purpose. Table 4 presents the results of statistical sig-
nificance tests (*) denoting p-values (p < 0.1, p < 0.05, p
< 0.01) between baseline models and our proposed AGA-
CL (“Our”) model. Upon reviewing this table, we can say
that the performance differences between most baseline
models and our model are statistically significant. These
results highlight the significant advancements and superior
performance of our proposed approach compared to state-
of-the-art (SOTA) techniques, confirming the effectiveness
and potential of our AGA-CL model in cross-lingual SER
tasks.

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2025.3530105

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 18,2025 at 22:53:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, OCTOBER 2024 10

TABLE 5: The SER performances (in terms of UAR, averaged over 10 runs) of the proposed model and the other
experimented models for both 4-category and binary emotion SER.

M→B B→M
Models 4-CAT neu hap ang sad aro val 4-CAT neu hap ang sad aro val

M→M 61.89 78.56 82.98 77.91 71.64 64.54 48.22 57.33 68.13 71.07 69.83 67.11 61.33 45.85
CL 52.01 65.26 63.89 63.40 59.33 52.81 36.28 49.15 56.21 53.76 55.32 54.20 50.47 35.43

M
on

o

BA-CL 55.69 65.31 66.67 62.22 57.45 54.55 39.59 53.87 55.43 52.65 56.17 51.02 53.63 37.28
WA-CL 51.06 58.42 55.38 59.12 53.54 52.75 36.35 49.45 50.33 46.83 54.21 49.91 50.15 35.27

GA-CL [22] 57.33 67.13 70.67 69.83 67.11 55.36 40.74 53.01 59.22 60.15 59.67 59.82 54.29 38.94
AGA-CL 57.91 68.56 70.98 69.36 65.25 56.39 41.74 54.58 58.6 52.42 60.91 58.95 56.41 39.97

D
ip

h

BA-CL 52.01 63.72 60.83 61.29 58.55 53.32 40.86 50.25 55.78 54.65 55.47 50.31 53.82 37.74
WA-CL 45.60 58.15 51.57 57.35 55.92 50.98 37.42 49.12 53.56 53.77 52.46 48.22 50.63 35.38
GA-CL 59.93 60.21 61.33 59.97 55.23 54.39 40.56 51.54 58.49 57.09 56.13 52.5 55.79 37.64

AGA-CL 55.10 59.62 62.08 60.33 56.71 55.33 41.96 52.09 60.16 57.39 57.00 53.36 56.73 37.85

Bo
th

BA-CL 54.26 64.66 65.04 68.97 64.45 55.33 40.74 53.31 57.03 55.32 56.68 55.28 54.35 38.34
WA-CL 49.61 59.84 59.55 60.62 58.13 50.47 37.93 49.53 51.24 48.85 50.34 48.56 49.21 35.42
GA-CL 57.49 67.75 70.63 70.27 68.49 56.42 41.24 54.12 59.75 60.56 60.82 59.23 56.86 38.35

AGA-CL 58.14 66.88 71.08 74.63 69.29 57.25 42.33 55.49 61.13 60.98 61.34 60.05 57.47 40.31

7.2.2 Proposed Architecture Evaluations
Table 5 provides a comprehensive overview of the per-
formance of various variants of cross-lingual SER models,
allowing for a thorough understanding of the proposed ap-
proach. The table includes a model without domain adapta-
tion (CL). In contrast, AGA-CL approach, emerges as the top-
performing model, achieving UARs of 58.14% and 55.49%
on the M→B and B→M tasks, respectively. Among the
unsupervised cross-lingual SER architecture considered in
this work, the AGA-CL approach stands out, showcasing su-
perior performance compared to the CL method with 6.23%
and 6.34% for M→B and B→M tasks, respectively. Notably,
the non-attention-based GA-CL model also exhibits absolute
UAR gains of 5.48% and 4.67% on the M→B and B→M
tasks, respectively. We also present the emotion-specific
binary classifier results in Table 5, we can observe that all
emotions categories AGA-CL has better results as compared
to the CL model with UAR of 1.62%, 7.19% 11.23%, and
9.96% in the M→B task and UAR of 4.92%, 7.22% 6.02%,
and 5.85% in the B→M task for neutral, happiness, anger and
sadness, respectively.

Furthermore, we explore the phonetic anchoring ap-
proach using the best-vowel-anchored (BA-CL) and worst-
vowel-anchored (WA-CL) models, which select a single
vowel as the anchor. Table 5 specifies the performance for
each model. The performances show that, for a 4-category
SER, the BA-CL method has improvements over the WA-
CL methods with 4.65% for the M→B task and 3.78% for
the B→M task. The binary emotion SER results also reveal
that the BA-CL model outperforms the WA-CL approaches,
achieving improved UARs of 4.82%, 5.49%, 8.38%, and
6.32% on the M→B task and 5.89%, 6.47%, 6.34%, and
6.72% on the B→M task for neutral, happiness, anger and
sadness, respectively. However, it is important to note that
using a single vowel as the anchor (BA-CL) does not yield
performance on par with the set of vowels utilized in our
proposed model (GA-CL and AGA-CL). Also, when compar-
ing our previous architecture GA-CL (proposed in our previ-
ous work [22]) with the current attention-based architecture
AGA-CL, it is evident that AGA-CL demonstrates superior
anchor utilization by consistently outperforming GA-CL in
nearly all scenarios. This observation reinforces the idea that

the incorporation of cross-phonetic attention significantly
complements our mechanism. These findings validate the
effectiveness of transfer learning based on the selected
common phonetic anchors, which effectively incorporate
essential information and facilitate language adaptation in
cross-lingual SER tasks.

We extend our experiments to include arousal and va-
lence dimensions. We categorize arousal and valence into
three levels by dividing the 7-point Likert scale into low
(1-2), medium (3-5), and high (6-7) categories. This ap-
proach captures calm/negative emotions, neutral states, and
intense/positive emotions, ensuring a more interpretable
structure for emotion classification while preserving the
emotional range in the SER tasks. Table 5 presents the
performance for arousal and valence. From Table 5, we ob-
serve a similar pattern in results for arousal and valence as
seen with the emotional category results. For arousal, the
AGA-CL model achieves the best performance (Both), with
57.25% for the M→B and 57.47% for B→M tasks. As for
valence, which is more challenging to recognize, the AGA-
CL model does not perform significantly better, but still
delivers competitive results, achieving 42.33% in the M→B
and 40.31% in the B→M tasks. The results demonstrate that
our approach is effective not only for the emotional category
task but also for other emotional attributes.

Upon observing the performance of our models in the
only-Mono and only-Diph scenarios, as presented in Table
5, we notice that the models perform better in the only-
Mono cases compared to the only-Diph cases. For instance,
the AGA-CL models for Mono demonstrate an improvement
of 2.81% in a 4-category SER task and 8.94% improvement
in UAR for neutral, 8.90% for happiness, 9.03% for anger, and
8.54% for sadness in the binary SER models for the M→B
train-test scenario. These observations are consistent with
the results obtained in the B→M scenario as well. It indicates
that the Mono case, being single phone vowels, exhibits
more effective emotional transfers compared to the Diph,
which involve a combination of two vowel sounds. Here,
a model with “Both” Mono and Diph vowels gives better
performance since it allows the model to capture a broader
range of acoustic characteristics associated with different
emotions.
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(a) happiness (b) anger (c) sadness

Fig. 5: t-SNE visualization depicting the feature representa-
tions of vowels coming from both corpora test sets from the
proposed models (AGA-CL: with the anchoring mechanism)
for M→B scenario for the considered emotions.

TABLE 6: Multidimensional distances, measured in Com-
bined score (Com), within source and target vowel feature
representations after the implementation of our proposed
vowel anchoring mechanism.

Mono Diph
/i/ /E/ /@/ /A,a/ /O/ /u/ /aI/ /eI/ /aU/ /oU/

M
→

B

neu 0.84 0.81 0.76 0.83 0.83 0.81 0.80 0.84 0.83 0.82
hap 0.80 0.80 0.79 0.84 0.81 0.79 0.83 0.83 0.86 0.81
ang 0.77 0.78 0.79 0.76 0.76 0.79 0.77 0.85 0.77 0.78
sad 0.79 0.77 0.77 0.76 0.83 0.74 0.80 0.84 0.83 0.81

B→
M

neu 0.76 0.79 0.81 0.81 0.84 0.71 0.83 0.81 0.85 0.80
hap 0.85 0.75 0.76 0.79 0.82 0.80 0.79 0.83 0.81 0.76
ang 0.73 0.78 0.72 0.80 0.79 0.74 0.75 0.77 0.82 0.73
sad 0.75 0.77 0.74 0.77 0.78 0.77 0.76 0.71 0.75 0.79

7.3 Before/After Anchoring Feature Space Analyses

In this study, we have chosen vowels as candidates for the
anchoring mechanism based on their distances, enabling us
to analyze vowel features and their changes in distances
before and after the anchoring mechanism. Fig. 5 illustrates
the t-SNE plots of vowel features extracted from specific-
emotion binary SER AGA-CL-based models, focusing on
happiness, anger, and sadness similar way as the one shown
in Figure 3. The figure combines the vowel feature represen-
tations from the MSP-P and BIIC-P test sets within the same
t-SNE plot corresponding to the M→B task. The overall
analysis over these plots shows an enhanced closeness or
overlap of vowel features between the two corpora for
specific emotions. This overlapping tendency is particularly
prominent in several vowels, indicating a better level of
consistency among similar vowels in the MSP-P and BIIC-
P corpora. Similar insights are observed in the B→M task
as well. When we compare these findings with the t-SNE
plots presented in Section 4.2, we can observe that, although
initially only a few vowels are used as anchors, not only
these anchor vowels become closer, but other vowels also
exhibit some level of closeness. For instance, in the context
of the happiness, it is not only /i/, /@/, and /A,a/ that
display improved overlap, but also /E/ and /u/. This trend
of similar closeness among most vowel features is also ob-
served in neutral, anger, and sadness. These findings highlight
the effectiveness of the anchoring mechanism in promoting
greater similarity and alignment of vowel features across
languages.

(a) M→B

(b) B→M

Fig. 6: Variations in vowel feature proximity before and
after applying the anchoring mechanism for both M→B and
B→M scenarios, considering combined score (Com).

In addition to the visual insights provided by the t-SNE
plots in Fig. 5, which includes multi-dimensional vowel-
centered features, we conduct a comprehensive analysis of
feature closeness and distinctness similar to the Table 2.
Specifically, we compute multi-dimensional similarity for all
pairs of vowel features extracted from the MSP-P and BIIC-
P test samples. For example, we examined the similarity
in the vowel /i/ feature from both the MSP-P and BIIC-P
corpora. These estimated commonalities in terms of com-
bined score (Com) as elaborated in Section 4, are detailed in
Table 6 for both corpus test sets and across the M→B and
B→M train-test scenarios. As shown in Table 6, we observe
that several vowels exhibit higher Com, suggesting greater
similarity between these vowels. For instance, in the case of
anger, vowels such as /@/ and /O/ demonstrate significant
closeness, with Com with 0.79 each, respectively. However,
it is worth observing that other vowels also show closer
relations, indicating a trend of enhanced feature similarity
across a broader set of vowels.

Upon careful observation from Tables 6 and 2, the anal-
ysis reveals that the Com values in Table 6 indicate a trend
where some anchored phonemes either shift slightly or
remain unchanged after applying constraints. For instance,
in the M→B task for hap, the unanchored phoneme /E/
aligns more closely across languages, reflected in the in-
creased Com value of 0.80, while the anchored phoneme
/i/ shows no significant change. This observation may
result from the inherent characteristics of the phonetic an-
choring process. Anchored phonemes are selected for their
perceived commonality across languages, which may not
perfectly correspond to the phonetic distances computed by
the model. Thus, while unanchored phonemes can adjust
and align more freely, anchored phonemes may exhibit
variations due to the constraints of the anchoring process.
These findings emphasize the complexity of cross-lingual
phonetic alignment in SER tasks, highlighting the impor-
tance of careful interpretation when evaluating phonetic
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patterns across languages.
We further cross-reference this level of commonality

with the information shown in Table 2 discussed in Sec-
tion 4.2 to understand the evolution of vowel closeness
before and after the implementation of our concept. Fig.
6 shows a comparative analysis with Table 2 and Table
6 across all analyzed emotions and vowels and illustrates
the changes in the proximity of vowel features before and
after the implementation of our concept. These plots reveal
a reduction in distances and an enhancement in similarity
for the majority of vowels during the emotion transfer
by our proposed cross-lingual SER framework. This result
indicates that the proposed anchoring approach successfully
aligns and enhances the similarity of vowel features across
languages.

7.4 Extended Analyses

To better understand the adaptability and performance
consistency of our approach across different models, we
conduct an extended analysis by replacing Wav2Vec2.0 with
the HuBERT [60] model. Here, we aim to find out whether
a different pretrained architecture has influence on cross-
lingual SER performance or not. Table 7 presents the re-
sults of the AGA-CL model using HuBERT embeddings.
The results shown in Table 7 demonstrate that HuBERT
performs competitively with Wav2Vec2.0, achieving 57.98%
of UAR for the M→B task and 55.53% of UAR for the B→M
task in the 4-CAT SER. For binary SER models, HuBERT
shows competitive performance compared to Wav2Vec2.0,
especially for emotions such as neutral and anger in the
B→M task, achieving UAR scores of 63.46% and 62.13%
for neu and ang respectively. However, as seen in Table
7, Wav2Vec2.0 generally outperforms HuBERT in overall
evaluation.

To evaluate our idea in a more linguistically diverse
context, we include Russian, one of the most widely spoken
language alongside American English and Taiwanese Man-
darin. Russian offers unique linguistic and phonetic features,
such as vowel inventory, stress patterns, and prosody. In-
cluding Russian helps address languages with distinct traits,
thereby validating the generalizability of our approach. We
use the Dusha [61] (a Russian-language speech emotion
corpus) dataset to evaluate and explore our proposed idea’s
generalization capability. The Dusha dataset is one of the
largest open bi-modal collections for SER, including around
350 hours and over 300,000 Russian language audio record-
ings and transcripts. It features balanced acted recordings
and an unbalanced real-life subset of podcasts, annotated
through crowdsourcing. For this work, we only choose the
2000 samples for the analyses, using it as test set to evaluate
the model.

Table 8 presents the results for the M→D task (MSP-P
as the source and Dusha as the target) and the B→D task
(BIIC-P as the source and Dusha as the target). Additionally,
the Table 8 also includes Dusha’s performance under direct
cross-test (CL) as the baseline, which does not involve any
transfer learning. The results shown in Table 8 indicate an
improved UAR for AGA-CL compared to CL, with increases
of 8.87% and 7.20% for the 4-CAT performance in the
M→D and B→D tasks, respectively. For binary SER tasks

TABLE 7: The table presents the performance results (in
terms of UAR) of the AGA-CL model with Wav2vec2.0 and
HuBERT feature extractors.

4-CAT neu hap ang sad

M
→

B HuBERT 57.98 67.43 70.37 73.91 68.03
Wav2vec2.0 58.14 66.88 71.08 74.63 69.29

B→
M HuBERT 55.33 63.46 59.35 62.13 59.68

Wav2vec2.0 55.49 61.13 60.98 61.34 60.05

TABLE 8: The table shows the performance (UAR) of the
proposed AGA-CL models using the Dusha (D) dataset as
the target corpus, with MSP-P (M) and BIIC-P (B) as source
corpora. Also includes the performance of Dusha under
direct cross-test (CL), without any transfer learning applied.

4-CAT neu hap ang sad

M
→

D CL 42.04 53.73 53.45 55.20 50.67
AGA-CL 50.91 63.02 62.39 64.56 58.34

B→
D CL 41.74 54.06 52.45 53.38 49.21

AGA-CL 48.94 61.48 60.67 61.01 55.53

performances shown in Table 8, the AGA-CL outperforms
CL across all emotion categories under both M→D and
B→D tasks. From Table 8, we can observe that these cross-
lingual tasks yield better performance with M→D (achiev-
ing 50.91% UAR) over B→D (achieving 48.94% UAR) for the
4-CAT SER task. This observation from Table 8 suggests that
English (MSP-P) serves as a better source for Russian (Dusha)
compared to Taiwanese Mandarin (BIIC-P). This performance
difference can be attributed to the fact that both Russian and
English are Indo-European languages and share some pho-
netic and syntactic similarities. These results support our
hypothesis that linguistic and phonetic similarities between
languages should be considered, rather than relying solely
on general phonetic-agnostic domain adaptation strategies.

8 DISCUSSION AND CONCLUSION

This research introduces a novel approach to unsupervised
cross-lingual SER utilizing the concept of leveraging lan-
guage phonetic universality through the use of a phonetic
anchoring mechanism. The idea is based on initial evidence
suggesting that certain vowels exhibit emotion-specific com-
monality across different languages. By analyzing the com-
monality of vowels including monophthongs and diph-
thongs, in their multidimensional feature representations,
the study identifies specific vowels that can serve as pho-
netic anchors to control the variability between languages,
thereby enhancing unsupervised cross-lingual SER learning.
The proposed model, named AGA-CL, leverages attention-
based phonetically-anchored language domain adaptation
and achieves superior performance compared to baseline
models. With a UAR of 58.14% and 55.59% for M→B and
B→M SER tasks, the AGA-CL outperforms the considered
baseline models. Results highlight the effectiveness of the
anchoring mechanism in enhancing cross-lingual SER.

It is important to recognize the limitations of our work.
In this study, we explore the linguistic diversity across
three widely used languages: American English, Taiwanese
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Mandarin, and Russian. However, despite this diversity,
our study specifically focuses on examining vowels, which
represent just one aspect of these complex language sys-
tems. Other factors, such as consonantal variation, prosodic
nuances, phonemic symbols, speaking styles, and articula-
tory gestures, are equally critical in understanding the full
scope of cross-lingual variability and commonality. Among
these, articulatory gestures are particularly noteworthy as
they capture the physical movements involved in speech
production, offering a shared physiological basis across
languages. While phonetic and acoustic properties can be
more variable, examining the finite set of human articulators
may reveal concrete, universal insights into language com-
monalities. Addressing these additional aspects will likely
be necessary to fully capture the intricate nature of these
language groups. In spite of these limitations, the results of
this study provide empirical evidence that this approach can
be quite effective in other languages.

Further future work encompasses several technical di-
rections. Firstly, we intend to enhance the generalization
of our proposed approach by integrating this innovative
phonetic knowledge-driven anchoring mechanism with ad-
vanced domain adaptation techniques. This combination
holds the potential for achieving superior performance and
wider applicability. Secondly, our study aims to expand the
scope of analysis beyond vowels and incorporate common
consonants and articulatory gestures, thus enhancing the
cross-lingual SER performances by leveraging a broader set
of phonetic constraints. Thirdly, considering the widespread
adoption of large pre-trained models, we plan to conduct in-
depth analyses that involve other large pre-trained encoders
to evaluate their performance with the proposed architec-
ture.
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