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Abstract—Recent studies have demonstrated the effectiveness
of fine-tuning self-supervised speech representation models for
speech emotion recognition (SER). However, applying SER in
real-world environments remains challenging due to pervasive
noise. Relying on low-accuracy predictions due to noisy speech
can undermine the user’s trust. This paper proposes a unified self-
supervised speech representation framework for enhanced speech
emotion recognition designed to increase noise robustness in SER
while generating enhanced speech. Our framework integrates
speech enhancement (SE) and SER tasks, leveraging shared self-
supervised learning (SSL)-derived features to improve emotion
classification performance in noisy environments. This strategy
encourages the SE module to enhance discriminative information
for SER tasks. Additionally, we introduce a cascade unfrozen
training strategy, where the SSL model is gradually unfrozen and
fine-tuned alongside the SE and SER heads, ensuring training sta-
bility and preserving the generalizability of SSL representations.
This approach demonstrates improvements in SER performance
under unseen noisy conditions without compromising SE quality.
When tested at a 0 dB signal-to-noise ratio (SNR) level, our
proposed method outperforms the original baseline by 3.7% in
F1-Macro and 2.7% in F1-Micro scores, where the differences
are statistically significant.

Index Terms—Speech emotion recognition, speech enhance-
ment, noisy speech, multitask learning.

I. INTRODUCTION

Speech emotion recognition (SER) automatically identifies
human emotional states through speech signals. It is a crit-
ical element of human-computer interaction (HCI), enabling
machines to engage in emotionally-aware communication with
humans [1], [2]. In recent years, advancements in SER systems
have been facilitated by the availability of large emotional
speech datasets [3]-[7] and the integration of pre-trained
speech representation models [8]-[10]. These developments
have significantly enhanced the performance of SER systems
[11]-[13].

As SER systems are increasingly deployed in real-world
applications, such as digital assistants [14], the issue of non-
stationary background noise has become more critical, signif-
icantly degrading system performance. Studies have proposed
various approaches to address this challenge, including data
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augmentation [15], feature selection [16], [17], domain adap-
tation [18], and pre-processing the speech signal using speech
enhancement (SE) [19]. While these methods improve SER
performance in noisy conditions, most of them, except for
SE pre-processing, do not provide cleaned speech, limiting
their applicability; for example, in critical applications like
emergency response systems [20], where accurate emotion
recognition and the availability of intelligible speech are both
needed or in the customer call center, having enhanced speech
is useful for human intervention beyond machine-generated
emotion labels. However, incorporating SE as a front-end
module often substantially increases the overall model size,
requiring significant computational resources and complicating
its implementation. Since SE aims to increase intelligibility
rather than SER performance, the aliasing that occurs during
the generation of enhanced audio can affect the discriminative
acoustic features for SER and limit its performance.

Given the promising results of speech self-supervised learn-
ing (SSL) pre-trained representations across multiple tasks,
recent studies have explored their application to SE tasks
and show promising results [21]-[23]. These studies pave
the way to investigate the feasibility of combining SER and
SE tasks using a shared SSL model, as SER studies have
mainly focused on using transformer-based speech represen-
tation models [11]-[13]. The ideal implementation is for SER
and SE tasks to share the same SSL representation, building a
system that enhances discriminative cues relevant to the SER
task.

This study proposes a unified self-supervised speech rep-
resentation framework for enhanced SER to improve the
robustness in noisy environments. By integrating SE and SER
modules with shared SSL representations, we reduce the model
size and leverage the shared information learned from both
tasks, leading to improved performance. By adding the SER
task, the SE goal is to improve intelligibility and enhance
discriminate information to recognize emotions.

Our experiments with the MSP-Podcast [4] corpus show
that combining SE and SER helps the model learn more
generalized features, making it more robust to unseen noise
conditions. In the 0 dB signal-to-noise ratio (SNR) condition,
our method improves the emotion classification model trained
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with clean speech by 7.3% for F1-Macro and 4.5% for F1-
Micro scores. Compared to our best baseline, we observe
improvements of 2.1% for F1-Macro and 3.0% for F1-Micro.
Additionally, the proposed method shows competitive results
with models solely fine-tuned for SE, confirming that combin-
ing SE and SER enhances noise robustness without sacrificing
SE performance, especially in unseen conditions. This dual-
task capability expands potential application scenarios while
fostering user trust. The main contributions of this study are:
o We explore using multitask learning, combining SE and
SER, to enhance noise robustness, demonstrating im-
proved performance on unseen noise types and levels.
o We adopt a cascade unfrozen training strategy for fine-
tuning the SSL model in a multitask setting to stabilize
the training process and balance both tasks.

II. RELATED WORK
A. SER in noisy speech

Noise robustness in SER systems has become increasingly
important for real-world applications. Lakomkin et al. [24] and
Wu et al. [15] used data augmentation strategies to close the
gap between training and real-world conditions. Leem et al.
[16], [25] focused on enhancing noise robustness by selecting
robust low-level descriptors (LLDs) and strengthening weaker
ones. However, these methods do not provide clean speech,
limiting the practical use of these systems. Triantafyllopoulos
et al. [19] incorporated an SE front-end to improve SER
in low SNR, while Chen et al. [26] introduced SNR-level
detection to mitigate SE’s impact on clean speech. However,
these two-stage approaches are resource-intensive, so they are
not optimal for deployment.

B. Speech self-supervised representations for SE

SSL representations have shown promise for various tasks,
including SE. Huang et al. [21] demonstrated that SSL models
outperform traditional features such as STFT in speech en-
hancement. Song et al. [23] used WavLM representations to
compensate for limited data, while Hung et al. [22] integrated
weighted SSL representations with spectrogram features to
deal better with the noise.

SSL representations have significantly improved SER tasks
[11]-[13], [27]. Given the progress in applying SSL repre-
sentations to SE tasks, our method explores the potential of
integrating both modules using shared SSL representations.
This approach successfully reduces the overall model size
and avoids the potential aliasing issues that can arise when
generating enhanced speech.

III. PROPOSED METHOD

A. Unified SSL Speech Representation for Enhanced Speech
Emotion Recognition

This paper proposed a unified self-supervised speech repre-
sentation for enhanced SER. Figure 1 illustrates our proposed
framework. We integrate SE and SER heads with shared
speech SSL representations. Let Sé is the representation of
layer [ € N with the SSL. model parameterized by 6. Let
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Fig. 1. Framework of our proposed unified self-supervised speech represen-
tations for enhanced speech emotion recognition.

ZTelean € Xclean AN Tpojsy € Xpoisy denote the clean
and noisy speech, paired with the SER task labels y € Y.
We apply a weighted sum of features from each layer to
fully exploit the information captured by the SSL model.
Specifically, for SER, we define the weighted sum as Fy_, =
ZZLZ_Ol wlSWSé(xnoisy), where w; . denotes the weight as-
signed to each layer for the SER task. Similarly, for SE, we de-
fine Fy,, = Zf;ol wy,, Sh(Tnoisy), With wy,_ representing the
corresponding weights for SE. The SER head, parameterized
by 0sgr, is denoted as Hy,,, ., (Pooling(Fy,.,)) : Xnoisy —
Y. For the SE task, we concatenate the spectral representation
X, derived from the magnitude component of the STFT and
compressed using the loglp function (loglp(z) = log(1l+ z))
[28], with the weighted sum of features from all layers to
enrich the information. The SE head, parameterized by fgg,
is denoted as Hy,, (Fp,,, Xnoisy) : Xnoisy — Xelean-

We optimize the model using two loss functions: a weighted
multi-class cross-entropy loss Ly cp to handle class im-
balance in predicting emotional labels and a L£; loss for
reconstructing clean speech. The objective of our approach
is to simultaneously enhance speech and perform robust SER
0N Tpeisy, formally expressed as:

min  Lwce (HGSER(POOZing(Feser))a y)
0,0sEr.0sE (1)
+ ‘Cl(HGSE (nge, Xnoisy)7 Xclean)

The first term evaluates the performance of speech emotion
classification, and the second term assesses the quality of
the enhanced spectral representation. When we combine these
losses, we expect the SE model to improve not only the sig-
nal’s intelligibility but also the SER discriminative information
in the features for the SER task.

B. Cascade Unfrozen Training

SSL leverages large amounts of unlabeled data to extract
meaningful representations. To prevent these features from be-
ing misled by the back-propagation from randomly initialized
task heads and to avoid over-fitting to a specific task, we
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adopt the cascade unfrozen training (CUT) strategy. In this
approach, we first train the SE and SER models with the SSL
model’s parameters frozen. Once these models are stable, we
unfreeze the SSL model and fine-tune all components. This
method helps stabilize the training and ensures that the SSL
representations remain general and effective for both tasks.

IV. EXPERIMENTAL SETTINGS
A. Data preparation

We train and evaluate the proposed model using the MSP-
Podcast corpus [4], which contains natural and diverse emo-
tional speech samples collected from various podcast record-
ings. The selected audio segments range from 2.75 to 11 sec-
onds in duration, ensuring they are free of background music
or overlapping speech. The recordings have a predicted SNR
above 20 dB, making this corpus a reliable, clean emotional
speech database. In this study, we focus on predicting four
categorical emotions: anger, sadness, happiness, and neutral
state. We use version 1.11 of the corpus, which comprises
100,896 annotated utterances across these emotion classes
(Anger: 10,342; Sadness: 8,347; Happiness: 29,454; Neutral:
52,753). We use the training set to fine-tune the pre-trained
speech representation model. We employ the development set
to select the best model during fine-tuning.

To simulate real-world noisy environments, we overlay
speech from the CRSS-4ENGLISH-14 corpus [29] and gener-
ate babble noise, contaminating the training and development
sets with an SNR level of 5 dB. We contaminate the Test 1 set
of the MSP-Podcast corpus for evaluation with three different
SNR levels: 0 dB, 5 dB, and 10 dB. Additionally, we collect
ambient noise sounds from the Freesound repository [30] to
assess the robustness of our method to unseen noise. Similarly,
we contaminate the Test 1 set with the same three SNR levels.

B. Fine-tuning Self-Supervised Model

In this study, we implement our proposed method using
the WavLM Large model [10], which has demonstrated top
performance in SER tasks within the speech processing uni-
versal performance benchmark (SUPERB) [13], [31]. This
model is pre-trained with noisy speech, making it likely to
produce more robust representations compared to other pre-
trained speech SSL models. For the SE task, we use the BSSE-
SE model [22]. For the SER task, we employ the baseline
model from the Odyssey 2024 Speech Emotion Recognition
Challenge [13].

We apply Z-normalization to the raw waveform during fine-
tuning, estimating the mean and standard deviation across the
entire training set. Initially, we freeze the SSL model and train
the SE and SER heads separately. The SE head is trained with
a batch size of 16 for 130 epochs using the AdamW optimizer
[32] with a learning rate of 5 x 10~°. The SER head is trained
with a batch size of 32 for 20 epochs using the same optimizer
and learning rate. After this, we fine-tune the entire pipeline
using the pre-trained head weights, with a batch size of 32 for
20 epochs. We continue using the AdamW optimizer, with a
learning rate of 5 x 10~° for the task heads and 2.5 x 10~ for

the SSL model for another 20 epochs. Throughout all training
steps, the WavLM CNN feature extractor remains frozen.

C. SER baselines

We compare our proposed method with four SER baselines:

e Original: Fine-tunes the SER model using clean emo-
tional speech without adapting to noisy conditions.

o SE Pre-process (SE-P): Utilizes speech enhancement as
a pre-processing step and fine-tunes the SER model with
the enhanced speech. The SE model has been fine-tuned
on the MSP-Podcast corpus from the pre-trained weight
trained on the VCTK-DEMAND dataset [33].

o Fine-tuning Head (FT-H): Updates only the downstream
classification head with noisy speech, keeping the fine-
tuned speech representation model parameters frozen.

o Fine-tuning Entire Model (FT-M): Updates both the
speech representation model and the downstream SER
head using noisy speech.

We denote our proposed method as fine-tuning with multi-

task learning (FI-MTL): Our proposed method trains the SE
and SER models simultaneously using CUT.

D. SE baselines

In this paper, we compare our proposed method against two
baselines:

o Noisy: Speech contaminated by overlaying speech from
the CRSS-4ENGLISH-14 corpus or adding ambient noise
from the Freesound repository.

o Fine-tuned: Speech enhanced by a model fine-tuned
exclusively for the SE task using the MSP-Podcast corpus
training set. The starting model is the pre-trained weight
obtained using the VCTK-DEMAND dataset.

V. RESULTS
A. Emotion Recognition

We evaluate the SER performance of each training strategy
under three different SNR conditions, considering both seen
and unseen noise.

We select models trained with four different random seeds
that showed the best performance on the development set.
The test set is divided into five groups for each condition,
resulting in 20 values used for statistical analysis (4 runs x 5
test sets). We perform a one-tailed Welch’s t-test between the
original and other models to determine if the training strategy
significantly improves the performance of the original SER
model in noisy conditions, asserting significance at p-value <
0.05.

Table I presents the SER performance across noisy con-
ditions. The model fails to improve when only the task
head is fine-tuned to adapt to noise. However, fine-tuning
the entire model, including the SSL speech representation,
leads to significant gains. Adding the SE module before the
SER model further enhances performance. Nevertheless, our
proposed FI-MTL method performs better in unseen noise
conditions, particularly in high-noise scenarios, indicating that
SE concatenation may cause over-fitting to seen noise and
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TABLE I
AVERAGE SCORES OF OUR PROPOSED METHOD (FT-MTL) AND
BASELINES IN SER. WE DENOTE WITH *, *, f, AND { WHEN A MODEL
PERFORMS SIGNIFICANTLY BETTER THAN THE ORIGINAL, FT-H, FT-M,

TABLE II
SE PERFORMANCE OF OUR PROPOSED METHOD (FT-MTL) AND
BASELINES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

AND SE-P MODELS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD. SNR_ [ Model PESQ CSIG CBAK COVL SSNR STOI
CRSS-4ENGLISH-14 corpus (Seen Noise)
SNR [ Model Precision Recall F1-Macro  F1-Micro Noisy 1.10 716 1.68 157 235 062
CRSS-4ENGLISH-14 corpus (Seen Noise) 0dB Fine-tuned 1.76 3.51 2.72 2.66 5.24 0.83
— FT-MTL 159 334 2.55 2.48 435 081
Orlgmal 0.474 0.414 0.416 0.553 S4B Noisy 1.20 261 2.06 1.88 1.20 0.74
FT-H 0.391 0.431* 0.352 0.398 (M‘l hed) Fine-tuned  2.31 4.04 3.19 3.21 8.03 0.89
0dB FT-M 0.519**  0.531**  0.520** 0.597** atche FE-MTL 216 392  3.10 307 774 088
SE-P 0.552**t  0.581**FT  0.557**T 0.624**1 Noisy 1.42 3.09 250 226 5.15 0.83
. *oxt ok *oxt *oxt 10dB Fine-tuned 2.81 4.46 3.63 3.68 10.82 0.93
I;TAMIEI 0'825% 5 065282 0.3255())8 0'3%71 5 FT-MTL 268 436 3.55 356 1067 092
Ir:lplg_lH 0'430 0'495 0'413 0‘457 Freesound repository (Unseen Noise)
(MSd]El " FI-M 0550** 0577** 0557** 0623** Noisy 1.15 2.50 1.79 1.79 -2.28 0.73
atche N N N 0dB Fine-tuned  1.26  2.69 1.99 1.95 051 075
SE-P 0-5661*: 0598*: 0'5721*1 0'636:* . FLMTL 123 268 196 194 080 076
FT-MTL _ 0.560 0.576 0.562 0.635 Noisy 129 291 216 2.09 125 082
Original 0.565 0.553 0.553 0.637 5dB Fine-tuned  1.66  3.38 2.59 2.53 439 086
FT-H 0.446 0.520 0.438 0.480 FT-MTL 159 332 251 2.46 3.80  0.86
10dB FI-M 0.562* 0.593** 0.569** 0.633* Noisy 1.57 3.36 2.60 2.48 5.17 0.88
SE-P 0.569*1 0.602*t 0.576** 0.638* 10dB Fine-tuned 2.28 4.03 3.23 3.19 8.99 0.92
FIMIL 0569 0,588+ 0.573* 0.644" FT-MTL 220 397 3.16 3.12 848  0.92
Freesound repository (Unseen Noise) TABLE III
Oricinal 0336 0312 03508 0398 COMPARISON OF SER PERFORMANCE WITH AND WITHOUT THE CUT
F”l%-H 0427 0'500 0'410 0.444 METHOD ACROSS DIFFERENT NOISE CONDITIONS.
* * %k * k. *
0dB ];’g_l\l;[ 8232* ggfé** 8233** 8252* SNR | Method | Precision  Recall Fl-Macro  FI-Micro
FEMTL 05521 0551 0.545*1  0.625*1F  oap | FTMILwWOCUT 833 03 0578 ooty
Original 0563 0.565 0554 0.629 FEMTL wio CUT | 0560 0579 0.567 0.636
FT-H 0.445 0.521 0.432 0.469 5dB B wro - - - .
sdB FEM sy 0697+ FI-MTL 0.560 0576 0.562 0.635
. “t . - . . . . 10dB FT-MTL w/o CUT 0.571 0.595 0.580 0.647
SE-P 0.565 0.584 0.564 0.629 FT-MTL 0.569 0.588 0.573 0.644
FT-MTL  0.566*T  0.578**  0.565**  0.640**f
Original 0.571 0.586 0.570 0.639 TABLE IV
FT-H 0.452 0.529 0.443 0.480 COMPARISON OF SE PERFORMANCE WITH AND WITHOUT THE CUT
10dB FT-M 0.565* 0.600** 0.572* 0.634* ACROSS DIFFERENT NOISE CONDITIONS.
SE-P 0.571* 0.597* 0.574* 0.636*
FT-MTL 0.571* 0.588* 0.572* 0.644*1 SNR | Method [ PESQ_CSIG__CBAK _COVL SSNR__ STOI
oap | FFMIL wio CUT | 139 3.05 231 221 279 0.77
FT-MTL 159 334 255 2.48 435 081
s " FT-MTL w/o CUT | 191  3.67 291 2.82 6.95  0.87
reduce robustness. t(') unseen cond1t10n§. At 0 dB, FI-MTL 5dB FTMTL 216 392 310 307 771 o088
outperforms the original model by 3.7% in F1-Macro and 2.7% \ods | FEMIL wio CUT | 240 412 337 330 999 09I
FT-MTL 268 436 355 356  10.67  0.92

in F1-Micro. FI-MTL achieves improvements of 1.1% and
1.8% in F1-Macro and F1-Micro over the SE-P model. These
results are statistically significant, particularly in the unseen
noise condition (Freesound repository dataset).

B. Speech Enhancement

This section evaluates the SE performance across two noise
datasets at three different SNR levels. As shown in Table II,
fine-tuning with the SER task slightly drops SE performance.
However, this performance gap narrows under unseen noise
conditions, demonstrating that our proposed method main-
tains SE effectiveness without sacrificing robustness in unseen
environments. While our primary goal is to improve SER
performance, it is encouraging that the SE metrics of the
resulting speech are similar to the original SE method.

C. Ablation Study

In the ablation study, we analyze the effectiveness of the
adapted CUT strategy. As shown in Table III and Table IV,
CUT introduces a trade-off between SER and SE perfor-
mance. Paired t-tests reveal no significant difference in SER
performance with or without CUT, confirming its negligible

impact on this task. Conversely, CUT yields substantial gains
in SE, improving SSNR by 55.9% under 0 dB conditions and
enhancing speech quality metrics across all SNR levels. These
results demonstrate that CUT effectively balances the demands
of both tasks without severely compromising either.

VI. CONCLUSIONS

This paper introduced a unified self-supervised speech rep-
resentation framework to enhance SER robustness in noisy
environments. By integrating SE and SER with shared SSL
representations, the model preserves competitive performance
across SNR levels. The results show strong SER performance
without sacrificing SE quality. Notably, the framework excels
in unseen noise, outperforming the best baseline. This result
demonstrates the potential of jointly training SE and SER to
improve generalization and noise robustness, which is crucial
for real-world applications where diverse noise scenarios are
inevitable. Furthermore, this study highlights that SSL speech
representations can effectively handle both SE and SER tasks
simultaneously.
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