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Abstract—Recent studies have demonstrated the effectiveness
of fine-tuning self-supervised speech representation models for
speech emotion recognition (SER). However, applying SER in
real-world environments remains challenging due to pervasive
noise. Relying on low-accuracy predictions due to noisy speech
can undermine the user’s trust. This paper proposes a unified self-
supervised speech representation framework for enhanced speech
emotion recognition designed to increase noise robustness in SER
while generating enhanced speech. Our framework integrates
speech enhancement (SE) and SER tasks, leveraging shared self-
supervised learning (SSL)-derived features to improve emotion
classification performance in noisy environments. This strategy
encourages the SE module to enhance discriminative information
for SER tasks. Additionally, we introduce a cascade unfrozen
training strategy, where the SSL model is gradually unfrozen and
fine-tuned alongside the SE and SER heads, ensuring training sta-
bility and preserving the generalizability of SSL representations.
This approach demonstrates improvements in SER performance
under unseen noisy conditions without compromising SE quality.
When tested at a 0 dB signal-to-noise ratio (SNR) level, our
proposed method outperforms the original baseline by 3.7% in
F1-Macro and 2.7% in F1-Micro scores, where the differences
are statistically significant.

Index Terms—Speech emotion recognition, speech enhance-
ment, noisy speech, multitask learning.

I. INTRODUCTION

Speech emotion recognition (SER) automatically identifies

human emotional states through speech signals. It is a crit-

ical element of human-computer interaction (HCI), enabling

machines to engage in emotionally-aware communication with

humans [1], [2]. In recent years, advancements in SER systems

have been facilitated by the availability of large emotional

speech datasets [3]–[7] and the integration of pre-trained

speech representation models [8]–[10]. These developments

have significantly enhanced the performance of SER systems

[11]–[13].

As SER systems are increasingly deployed in real-world

applications, such as digital assistants [14], the issue of non-

stationary background noise has become more critical, signif-

icantly degrading system performance. Studies have proposed

various approaches to address this challenge, including data
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augmentation [15], feature selection [16], [17], domain adap-

tation [18], and pre-processing the speech signal using speech

enhancement (SE) [19]. While these methods improve SER

performance in noisy conditions, most of them, except for

SE pre-processing, do not provide cleaned speech, limiting

their applicability; for example, in critical applications like

emergency response systems [20], where accurate emotion

recognition and the availability of intelligible speech are both

needed or in the customer call center, having enhanced speech

is useful for human intervention beyond machine-generated

emotion labels. However, incorporating SE as a front-end

module often substantially increases the overall model size,

requiring significant computational resources and complicating

its implementation. Since SE aims to increase intelligibility

rather than SER performance, the aliasing that occurs during

the generation of enhanced audio can affect the discriminative

acoustic features for SER and limit its performance.

Given the promising results of speech self-supervised learn-

ing (SSL) pre-trained representations across multiple tasks,

recent studies have explored their application to SE tasks

and show promising results [21]–[23]. These studies pave

the way to investigate the feasibility of combining SER and

SE tasks using a shared SSL model, as SER studies have

mainly focused on using transformer-based speech represen-

tation models [11]–[13]. The ideal implementation is for SER

and SE tasks to share the same SSL representation, building a

system that enhances discriminative cues relevant to the SER

task.

This study proposes a unified self-supervised speech rep-

resentation framework for enhanced SER to improve the

robustness in noisy environments. By integrating SE and SER

modules with shared SSL representations, we reduce the model

size and leverage the shared information learned from both

tasks, leading to improved performance. By adding the SER

task, the SE goal is to improve intelligibility and enhance

discriminate information to recognize emotions.

Our experiments with the MSP-Podcast [4] corpus show

that combining SE and SER helps the model learn more

generalized features, making it more robust to unseen noise

conditions. In the 0 dB signal-to-noise ratio (SNR) condition,

our method improves the emotion classification model trainedIC
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with clean speech by 7.3% for F1-Macro and 4.5% for F1-

Micro scores. Compared to our best baseline, we observe

improvements of 2.1% for F1-Macro and 3.0% for F1-Micro.

Additionally, the proposed method shows competitive results

with models solely fine-tuned for SE, confirming that combin-

ing SE and SER enhances noise robustness without sacrificing

SE performance, especially in unseen conditions. This dual-

task capability expands potential application scenarios while

fostering user trust. The main contributions of this study are:

• We explore using multitask learning, combining SE and

SER, to enhance noise robustness, demonstrating im-

proved performance on unseen noise types and levels.

• We adopt a cascade unfrozen training strategy for fine-

tuning the SSL model in a multitask setting to stabilize

the training process and balance both tasks.

II. RELATED WORK

A. SER in noisy speech

Noise robustness in SER systems has become increasingly

important for real-world applications. Lakomkin et al. [24] and

Wu et al. [15] used data augmentation strategies to close the

gap between training and real-world conditions. Leem et al.

[16], [25] focused on enhancing noise robustness by selecting

robust low-level descriptors (LLDs) and strengthening weaker

ones. However, these methods do not provide clean speech,

limiting the practical use of these systems. Triantafyllopoulos

et al. [19] incorporated an SE front-end to improve SER

in low SNR, while Chen et al. [26] introduced SNR-level

detection to mitigate SE’s impact on clean speech. However,

these two-stage approaches are resource-intensive, so they are

not optimal for deployment.

B. Speech self-supervised representations for SE

SSL representations have shown promise for various tasks,

including SE. Huang et al. [21] demonstrated that SSL models

outperform traditional features such as STFT in speech en-

hancement. Song et al. [23] used WavLM representations to

compensate for limited data, while Hung et al. [22] integrated

weighted SSL representations with spectrogram features to

deal better with the noise.

SSL representations have significantly improved SER tasks

[11]–[13], [27]. Given the progress in applying SSL repre-

sentations to SE tasks, our method explores the potential of

integrating both modules using shared SSL representations.

This approach successfully reduces the overall model size

and avoids the potential aliasing issues that can arise when

generating enhanced speech.

III. PROPOSED METHOD

A. Unified SSL Speech Representation for Enhanced Speech

Emotion Recognition

This paper proposed a unified self-supervised speech repre-

sentation for enhanced SER. Figure 1 illustrates our proposed

framework. We integrate SE and SER heads with shared

speech SSL representations. Let Sl
θ is the representation of

layer l ∈ N with the SSL model parameterized by θ. Let

Feature

Extractor

Noisy waveform

Layer 0

Layer 1

Layer 2

Layer N

Layer 3

WavLM

Transformer 

Encoder

…

Weighted 

Sum

Weighted 

Sum

Linear
BLSTM

BLSTM

Linear

STFT+log1p

Sigmoid

Attentive 

Statistics 

Pooling

Prediction 

Head

SE ModelSER Model

Clean waveform

Noise

STFT+log1p

CE

L1

Fig. 1. Framework of our proposed unified self-supervised speech represen-
tations for enhanced speech emotion recognition.

xclean ∈ Xclean and xnoisy ∈ Xnoisy denote the clean

and noisy speech, paired with the SER task labels y ∈ Y.

We apply a weighted sum of features from each layer to

fully exploit the information captured by the SSL model.

Specifically, for SER, we define the weighted sum as Fθser =∑L−1

l=0
wlserS

l
θ(xnoisy), where wlser denotes the weight as-

signed to each layer for the SER task. Similarly, for SE, we de-

fine Fθse =
∑L−1

l=0
wlseS

l
θ(xnoisy), with wlse representing the

corresponding weights for SE. The SER head, parameterized

by θSER, is denoted as HθSER
(Pooling(Fθser )) : Xnoisy →

Y. For the SE task, we concatenate the spectral representation

X , derived from the magnitude component of the STFT and

compressed using the log1p function (log1p(z) = log(1+ z))
[28], with the weighted sum of features from all layers to

enrich the information. The SE head, parameterized by θSE ,

is denoted as HθSE
(Fθse , Xnoisy) : Xnoisy → Xclean.

We optimize the model using two loss functions: a weighted

multi-class cross-entropy loss LWCE to handle class im-

balance in predicting emotional labels and a L1 loss for

reconstructing clean speech. The objective of our approach

is to simultaneously enhance speech and perform robust SER

on xnoisy , formally expressed as:

min
θ,θSER,θSE

LWCE(HθSER
(Pooling(Fθser )), y)

+ L1(HθSE
(Fθse , Xnoisy), Xclean)

(1)

The first term evaluates the performance of speech emotion

classification, and the second term assesses the quality of

the enhanced spectral representation. When we combine these

losses, we expect the SE model to improve not only the sig-

nal’s intelligibility but also the SER discriminative information

in the features for the SER task.

B. Cascade Unfrozen Training

SSL leverages large amounts of unlabeled data to extract

meaningful representations. To prevent these features from be-

ing misled by the back-propagation from randomly initialized

task heads and to avoid over-fitting to a specific task, we

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 19,2025 at 04:16:36 UTC from IEEE Xplore.  Restrictions apply. 



adopt the cascade unfrozen training (CUT) strategy. In this

approach, we first train the SE and SER models with the SSL

model’s parameters frozen. Once these models are stable, we

unfreeze the SSL model and fine-tune all components. This

method helps stabilize the training and ensures that the SSL

representations remain general and effective for both tasks.

IV. EXPERIMENTAL SETTINGS

A. Data preparation

We train and evaluate the proposed model using the MSP-

Podcast corpus [4], which contains natural and diverse emo-

tional speech samples collected from various podcast record-

ings. The selected audio segments range from 2.75 to 11 sec-

onds in duration, ensuring they are free of background music

or overlapping speech. The recordings have a predicted SNR

above 20 dB, making this corpus a reliable, clean emotional

speech database. In this study, we focus on predicting four

categorical emotions: anger, sadness, happiness, and neutral

state. We use version 1.11 of the corpus, which comprises

100,896 annotated utterances across these emotion classes

(Anger: 10,342; Sadness: 8,347; Happiness: 29,454; Neutral:

52,753). We use the training set to fine-tune the pre-trained

speech representation model. We employ the development set

to select the best model during fine-tuning.

To simulate real-world noisy environments, we overlay

speech from the CRSS-4ENGLISH-14 corpus [29] and gener-

ate babble noise, contaminating the training and development

sets with an SNR level of 5 dB. We contaminate the Test 1 set

of the MSP-Podcast corpus for evaluation with three different

SNR levels: 0 dB, 5 dB, and 10 dB. Additionally, we collect

ambient noise sounds from the Freesound repository [30] to

assess the robustness of our method to unseen noise. Similarly,

we contaminate the Test 1 set with the same three SNR levels.

B. Fine-tuning Self-Supervised Model

In this study, we implement our proposed method using

the WavLM Large model [10], which has demonstrated top

performance in SER tasks within the speech processing uni-

versal performance benchmark (SUPERB) [13], [31]. This

model is pre-trained with noisy speech, making it likely to

produce more robust representations compared to other pre-

trained speech SSL models. For the SE task, we use the BSSE-

SE model [22]. For the SER task, we employ the baseline

model from the Odyssey 2024 Speech Emotion Recognition

Challenge [13].

We apply Z-normalization to the raw waveform during fine-

tuning, estimating the mean and standard deviation across the

entire training set. Initially, we freeze the SSL model and train

the SE and SER heads separately. The SE head is trained with

a batch size of 16 for 130 epochs using the AdamW optimizer

[32] with a learning rate of 5×10−5. The SER head is trained

with a batch size of 32 for 20 epochs using the same optimizer

and learning rate. After this, we fine-tune the entire pipeline

using the pre-trained head weights, with a batch size of 32 for

20 epochs. We continue using the AdamW optimizer, with a

learning rate of 5×10−5 for the task heads and 2.5×10−5 for

the SSL model for another 20 epochs. Throughout all training

steps, the WavLM CNN feature extractor remains frozen.

C. SER baselines

We compare our proposed method with four SER baselines:

• Original: Fine-tunes the SER model using clean emo-

tional speech without adapting to noisy conditions.

• SE Pre-process (SE-P): Utilizes speech enhancement as

a pre-processing step and fine-tunes the SER model with

the enhanced speech. The SE model has been fine-tuned

on the MSP-Podcast corpus from the pre-trained weight

trained on the VCTK-DEMAND dataset [33].

• Fine-tuning Head (FT-H): Updates only the downstream

classification head with noisy speech, keeping the fine-

tuned speech representation model parameters frozen.

• Fine-tuning Entire Model (FT-M): Updates both the

speech representation model and the downstream SER

head using noisy speech.

We denote our proposed method as fine-tuning with multi-

task learning (FT-MTL): Our proposed method trains the SE

and SER models simultaneously using CUT.

D. SE baselines

In this paper, we compare our proposed method against two

baselines:

• Noisy: Speech contaminated by overlaying speech from

the CRSS-4ENGLISH-14 corpus or adding ambient noise

from the Freesound repository.

• Fine-tuned: Speech enhanced by a model fine-tuned

exclusively for the SE task using the MSP-Podcast corpus

training set. The starting model is the pre-trained weight

obtained using the VCTK-DEMAND dataset.

V. RESULTS

A. Emotion Recognition

We evaluate the SER performance of each training strategy

under three different SNR conditions, considering both seen

and unseen noise.

We select models trained with four different random seeds

that showed the best performance on the development set.

The test set is divided into five groups for each condition,

resulting in 20 values used for statistical analysis (4 runs × 5

test sets). We perform a one-tailed Welch’s t-test between the

original and other models to determine if the training strategy

significantly improves the performance of the original SER

model in noisy conditions, asserting significance at p-value ≤

0.05.

Table I presents the SER performance across noisy con-

ditions. The model fails to improve when only the task

head is fine-tuned to adapt to noise. However, fine-tuning

the entire model, including the SSL speech representation,

leads to significant gains. Adding the SE module before the

SER model further enhances performance. Nevertheless, our

proposed FT-MTL method performs better in unseen noise

conditions, particularly in high-noise scenarios, indicating that

SE concatenation may cause over-fitting to seen noise and
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TABLE I
AVERAGE SCORES OF OUR PROPOSED METHOD (FT-MTL) AND

BASELINES IN SER. WE DENOTE WITH ⋆, ∗, †, AND ‡ WHEN A MODEL

PERFORMS SIGNIFICANTLY BETTER THAN THE ORIGINAL, FT-H, FT-M,
AND SE-P MODELS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

SNR Model Precision Recall F1-Macro F1-Micro

CRSS-4ENGLISH-14 corpus (Seen Noise)

0dB

Original 0.474 0.414 0.416 0.553
FT-H 0.391 0.431

⋆ 0.352 0.398
FT-M 0.519

⋆∗
0.531

⋆∗
0.520

⋆∗
0.597

⋆∗

SE-P 0.552⋆∗† 0.581⋆∗† 0.557⋆∗† 0.624⋆∗†

FT-MTL 0.529
⋆∗†

0.530
⋆∗

0.525
⋆∗†

0.607
⋆∗†

5dB
(Matched)

Original 0.536 0.502 0.508 0.612
FT-H 0.430 0.495 0.413 0.457
FT-M 0.550

⋆∗
0.577

⋆∗
0.557

⋆∗
0.623

⋆∗

SE-P 0.566⋆∗† 0.598⋆∗† 0.572⋆∗† 0.636⋆∗

FT-MTL 0.560
⋆∗†

0.576
⋆∗

0.562
⋆∗†

0.635
⋆∗†

10dB

Original 0.565 0.553 0.553 0.637
FT-H 0.446 0.520 0.438 0.480
FT-M 0.562

∗
0.593

⋆∗
0.569

⋆∗
0.633

∗

SE-P 0.569∗† 0.602⋆∗† 0.576⋆∗ 0.638
∗

FT-MTL 0.569∗† 0.588
⋆∗

0.573
⋆∗ 0.644∗

Freesound repository (Unseen Noise)

0dB

Original 0.536 0.512 0.508 0.598
FT-H 0.427 0.500 0.410 0.444
FT-M 0.539

∗ 0.565⋆∗ 0.543
⋆∗

0.610
∗

SE-P 0.545
∗

0.547
⋆∗

0.534
⋆∗

0.607
∗

FT-MTL 0.552⋆∗† 0.551
⋆∗ 0.545⋆∗‡ 0.625⋆∗†‡

5dB

Original 0.563 0.565 0.554 0.629
FT-H 0.445 0.521 0.432 0.469
FT-M 0.557

∗ 0.591⋆∗ 0.564
⋆∗

0.627
∗

SE-P 0.565
∗†

0.584
⋆∗

0.564
⋆∗

0.629
∗

FT-MTL 0.566∗† 0.578
⋆∗ 0.565⋆∗ 0.640⋆∗†

10dB

Original 0.571 0.586 0.570 0.639
FT-H 0.452 0.529 0.443 0.480
FT-M 0.565

∗ 0.600⋆∗ 0.572
∗

0.634
∗

SE-P 0.571∗ 0.597
∗ 0.574∗ 0.636

∗

FT-MTL 0.571∗ 0.588
∗

0.572
∗ 0.644∗†

reduce robustness to unseen conditions. At 0 dB, FT-MTL

outperforms the original model by 3.7% in F1-Macro and 2.7%

in F1-Micro. FT-MTL achieves improvements of 1.1% and

1.8% in F1-Macro and F1-Micro over the SE-P model. These

results are statistically significant, particularly in the unseen

noise condition (Freesound repository dataset).

B. Speech Enhancement

This section evaluates the SE performance across two noise

datasets at three different SNR levels. As shown in Table II,

fine-tuning with the SER task slightly drops SE performance.

However, this performance gap narrows under unseen noise

conditions, demonstrating that our proposed method main-

tains SE effectiveness without sacrificing robustness in unseen

environments. While our primary goal is to improve SER

performance, it is encouraging that the SE metrics of the

resulting speech are similar to the original SE method.

C. Ablation Study

In the ablation study, we analyze the effectiveness of the

adapted CUT strategy. As shown in Table III and Table IV,

CUT introduces a trade-off between SER and SE perfor-

mance. Paired t-tests reveal no significant difference in SER

performance with or without CUT, confirming its negligible

TABLE II
SE PERFORMANCE OF OUR PROPOSED METHOD (FT-MTL) AND

BASELINES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

SNR Model PESQ CSIG CBAK COVL SSNR STOI

CRSS-4ENGLISH-14 corpus (Seen Noise)

0dB
Noisy 1.10 2.16 1.68 1.57 -2.35 0.62

Fine-tuned 1.76 3.51 2.72 2.66 5.24 0.83
FT-MTL 1.59 3.34 2.55 2.48 4.35 0.81

5dB
(Matched)

Noisy 1.20 2.61 2.06 1.88 1.20 0.74
Fine-tuned 2.31 4.04 3.19 3.21 8.03 0.89

FT-MTL 2.16 3.92 3.10 3.07 7.74 0.88

10dB
Noisy 1.42 3.09 2.50 2.26 5.15 0.83

Fine-tuned 2.81 4.46 3.63 3.68 10.82 0.93
FT-MTL 2.68 4.36 3.55 3.56 10.67 0.92

Freesound repository (Unseen Noise)

0dB
Noisy 1.15 2.50 1.79 1.79 -2.28 0.73

Fine-tuned 1.26 2.69 1.99 1.95 -0.51 0.75
FT-MTL 1.23 2.68 1.96 1.94 -0.80 0.76

5dB
Noisy 1.29 2.91 2.16 2.09 1.25 0.82

Fine-tuned 1.66 3.38 2.59 2.53 4.39 0.86

FT-MTL 1.59 3.32 2.51 2.46 3.80 0.86

10dB
Noisy 1.57 3.36 2.60 2.48 5.17 0.88

Fine-tuned 2.28 4.03 3.23 3.19 8.99 0.92
FT-MTL 2.20 3.97 3.16 3.12 8.48 0.92

TABLE III
COMPARISON OF SER PERFORMANCE WITH AND WITHOUT THE CUT

METHOD ACROSS DIFFERENT NOISE CONDITIONS.

SNR Method Precision Recall F1-Macro F1-Micro

0dB
FT-MTL w/o CUT 0.530 0.530 0.528 0.610

FT-MTL 0.529 0.530 0.525 0.607

5dB
FT-MTL w/o CUT 0.560 0.579 0.567 0.636

FT-MTL 0.560 0.576 0.562 0.635

10dB
FT-MTL w/o CUT 0.571 0.595 0.580 0.647

FT-MTL 0.569 0.588 0.573 0.644

TABLE IV
COMPARISON OF SE PERFORMANCE WITH AND WITHOUT THE CUT

ACROSS DIFFERENT NOISE CONDITIONS.

SNR Method PESQ CSIG CBAK COVL SSNR STOI

0dB
FT-MTL w/o CUT 1.39 3.05 2.31 2.21 2.79 0.77

FT-MTL 1.59 3.34 2.55 2.48 4.35 0.81

5dB
FT-MTL w/o CUT 1.91 3.67 2.91 2.82 6.95 0.87

FT-MTL 2.16 3.92 3.10 3.07 7.74 0.88

10dB
FT-MTL w/o CUT 2.40 4.12 3.37 3.30 9.99 0.91

FT-MTL 2.68 4.36 3.55 3.56 10.67 0.92

impact on this task. Conversely, CUT yields substantial gains

in SE, improving SSNR by 55.9% under 0 dB conditions and

enhancing speech quality metrics across all SNR levels. These

results demonstrate that CUT effectively balances the demands

of both tasks without severely compromising either.

VI. CONCLUSIONS

This paper introduced a unified self-supervised speech rep-

resentation framework to enhance SER robustness in noisy

environments. By integrating SE and SER with shared SSL

representations, the model preserves competitive performance

across SNR levels. The results show strong SER performance

without sacrificing SE quality. Notably, the framework excels

in unseen noise, outperforming the best baseline. This result

demonstrates the potential of jointly training SE and SER to

improve generalization and noise robustness, which is crucial

for real-world applications where diverse noise scenarios are

inevitable. Furthermore, this study highlights that SSL speech

representations can effectively handle both SE and SER tasks

simultaneously.
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