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ABSTRACT Recent advancements in dynamic facial expression recognition (DFER) have predominantly
utilized static features, which are theoretically inferior to dynamic features. However, models fully trained
with dynamic features often suffer from over-fitting due to the limited size and diversity of the training
data for fully supervised learning (SL) models. A significant challenge with existing models based on
static features in recognizing emotions from videos is their tendency to form biased representations, often
unbalanced or skewed towards more prevalent or basic emotional features present in the static domain,
especially with posed expression. Therefore, this approach under-represents the nuances present in the
dynamic domain. To address this issue, our study introduces a novel approach that we refer to as mixture of
emotion-dependent experts (MoEDE). This strategy relies on emotion-specific feature extractors to produce
more diverse emotional static features to train DFER systems. Each emotion-dependent expert focuses
exclusively on one emotional category, formulating the problem as binary classifiers. Our DFER model
combines these static representations with recurrent models, modeling their temporal relationships. The
proposed MoEDE DFER approach achieves a macro F1-score of 74.5% , marking a significant improvement
over the baseline, which presented a macro F1-score of 70.9% . The DFER baseline is similar to MoEDE,
but it uses a single static feature extractor rather than stacked extractors. Additionally, our proposed approach
shows consistent improvements compared to other four popular baselines.

INDEX TERMS Video facial expression recognition, emotion recognition, affective computing, ensemble
model.

I. INTRODUCTION
Emotions play an important role in interpersonal communica-
tion, where human facial expressions convey rich nonverbal
cues filled with emotional content. The automatic detection
of emotions from facial features opens a broad range of ap-
plications in affective computing. These applications include
enhancing human-computer interaction (HCI), improving se-
curity and surveillance systems, monitoring mental health
conditions, and evaluating engagement levels in educational
settings [7]. The field of facial expression recognition (FER) is
a challenging task due to the intricate and diverse expressions
exhibited across human faces. Studies have explored FER
solutions using both static and dynamic strategies. Systems

that operate with static images are termed static facial ex-
pression recognition (SFER) systems, while those analyzing
video sequences to infer the underlying emotions are referred
to as dynamic facial expression recognition (DFER) systems.
While considerable progress has been made in discriminating
posed expressions in static images, DFER remains a major
challenge, particularly in the presence of speech where facial
movements due to speech articulations add variability [23],
[33]. Our project primarily focuses on enhancing DFER per-
formance.

The significance of feature representations in FER can-
not be overstated, as they serve as the basis for effectively
capturing and distinguishing different emotional expressions

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 323

https://orcid.org/0000-0003-1395-0382
https://orcid.org/0000-0001-9613-1002
https://orcid.org/0000-0002-4075-4072
mailto:busso@cmu.edu


SALMAN ET AL.: MIXTURE OF EMOTION DEPENDENT EXPERTS: FACIAL EXPRESSIONS RECOGNITION IN VIDEOS THROUGH STACKED EXPERT MODELS

in dynamic facial images or video sequences. Deep learning
models designed for SFER have demonstrated competitive
features, particularly when trained on extensive datasets en-
compassing facial images from diverse subjects, ages, eth-
nicities, illumination, background, angles, and environments,
such as the AffectNet corpus [31]. However, despite the
huge size of the AffectNet corpus (approximately 440,000
labeled images), the distribution of images across its eight
discrete emotional labels is unbalanced, with classes like
disgust and contempt being notably underrepresented. Con-
sequently, static deep feature extractors may inadequately
represent and exhibit less efficacy, especially for underrep-
resented emotions. Moreover, while feature representations
derived from SFER systems are valuable, they may require
fine-tuning before being employed for DFER [14], [27], [32],
[37]. This need arises from the direct impact of speech ar-
ticulation on facial expressions [3], [4], particularly in the
movements of the orofacial region, which may not align
seamlessly with expressions characterized by static feature
extractors. Additionally, feature extractors trained exclusively
in the dynamic domain are susceptible to rapid over-fitting
due to the limited size and diversity of the training data,
especially when compared to static datasets. As a result, they
typically require pre-training on large unlabeled video-based
datasets using self-supervised learning methods, which is
time-consuming and necessitates using a GPU cluster [38].
Therefore, it is important to develop a pre-training approach
that not only produces diverse and balanced static feature
representations that can be fine-tuned for the dynamic domain,
improving FER performance in video sequences but can also
be trained on widely available consumer-grade GPUs within
hours.

Given the identified limitations, this study aims to enhance
the diversity and generalizability of static feature extractors,
improving the performance of dynamic FER. We hypothe-
size that a singular feature vector representing balanced or
unbalanced classes may lack the necessary diversity, as it is
an average representation of all emotions considered in the
dataset. To address this limitation, we propose a mixture of
emotion dependent experts (MoEDE) strategy, which trains
individual ‘expert’ feature extractors for each emotional cat-
egory. The objective is for each emotion-based expert feature
extractor to learn discriminative features specific to its corre-
sponding emotion, facilitating the distinction of that emotion
from others within the dataset. Since our main focus is on
DFER, we extend the application of each expert feature ex-
tractor to the dynamic domain. We transfer the static features
to the dynamic domain by incorporating a long short-term
memory (LSTM) layer. This layer learns the temporal depen-
dencies within the emotion-dependent expert input sequence,
followed by a classification layer that independently predicts
the emotion in an image sequence using each emotional
expert. Concurrently, during the same training process, we
employ an additional LSTM layer to ensemble all dynamic
outputs resulting from the previous LSTMs of the expert fea-
ture extractors, followed by a final softmax layer to predict the

underlying emotion in the image sequence using all emotion-
dependent experts.

We train eight emotion-dependent expert feature extractors
for SFER using binary classification. For this purpose, we
used subsets of the AffectNet dataset specific to each ex-
pert. Each subset includes all samples corresponding to the
expert’s positive emotion and an equivalent number of ran-
domly selected samples from the remaining emotional classes
(e.g., happiness versus selected samples not from the class
happiness). We train and evaluate our MoEDE framework
for DFER using the CREMA-D corpus [5]. Our experiments
demonstrate that by training on positive emotions, we can
achieve an average F1-score of 84.13% on just the positive
emotions in the development set of the AffectNet corpus.
Additionally, when analyzing the features extracted by each
emotion-dependent expert using the cosine similarity, we
found that the average cosine similarity across all feature
extractors is 0.33. This result indicates that while there are
similarities among the features, they can significantly dif-
fer. We train our DFER MoEDE model by employing the
emotion-specific models, obtaining macro F1-scores that out-
perform all other baseline models. The contributions of this
paper are as follows:
� A set of emotion-dependent expert feature extractors

aimed at enhancing the diversity and generalization of
feature representations in SFER.

� An ensemble model comprising individual expert clas-
sifiers demonstrating superior performance compared to
existing systems for DFER.

We are releasing the code and MoEDE models for public
use.1

II. RELATED WORK
The following section provides an overview of current static
and dynamic FER advancements. Subsequently, it examines
SFER techniques, which aim to enrich static feature diversity.
Furthermore, it discusses relevant ensemble models employed
for DFER.

A. FACIAL EXPRESSION RECOGNITION
We present an overview of deep learning methodologies de-
signed for FER based on both static images and dynamic
sequences. FER on static images has achieved impressive
performance across diverse datasets and under real-world
conditions [30]. For instance, Zhang et al. [42] proposed a
mixed feature network with a dual-direction attention head
to generate attention maps based on the extracted features
from various facial regions. Mao et al. [28] combined multi-
scale features computed via a window-based cross-attention
mechanism and facial landmarks for improved static FER.
Additionally, Savchenko et al. [35] proposed a lightweight
yet competitive FER model based on the EfficientNet [39]
and MobileNet [19] architectures, suitable for devices lacking
powerful GPUs. Li et al. [26] employed an encoder-decoder

1 [Online]. Available: https://github.com/3loi/MoEDE
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architecture to map facial expressions to a common rep-
resentation, decompose it into emotional and orthogonal
components, and synthesize emotionless faces, ultimately en-
abling emotion recognition.

Research indicates that even short image sequences de-
picting emotional dynamism facilitate a more accurate and
consistent perception of emotions [8]. However, despite the
advantages of analyzing facial expressions within dynamic
video sequences, factors such as speech content, cultural nu-
ances, physiological differences, and speaker idiosyncrasies
can affect the performance of FER systems [29]. To address
these issues, sophisticated techniques are required to delineate
the emotion-dependent correlation between facial gestures
and speech [4], given that speech articulation continuously
alters facial appearance [3]. Consequently, state-of-the-art
(SOTA) approaches in dynamic emotion recognition have ex-
plored multimodal frameworks, encompassing both audio and
visual modalities. Since our study exclusively addresses the
visual modality, we review recent audiovisual approaches that
have reported their efficacy when solely relying on visual
modality.

Huang et al. [21] proposed a model that employs a
transformer-based architecture [41] for feature extraction, fol-
lowed by an LSTM layer, aimed at improving the modeling
of temporal dependencies. We refer to this method as the T-
LSTM framework. Goncalves and Busso [12], [13] proposed
the AuxFormer, an audio-visual transformer-based framework
featuring unimodal auxiliary networks, enabling the evalua-
tion of performance on individual modalities. Gong et al. [15]
proposed the unified audio-visual model (UAVM) that inte-
grates the transformer and classification layers shared across
modalities, accompanied by modality-specific feature extrac-
tors. Lastly, Goncalves et al. [14] introduced the versatile
audio-visual learning (VAVL) method, which is a versatile
audio-visual learning framework capable of accommodating
single or multiple modalities by using shared layers used
by all the modalities. For the visual modality, they used
a pre-trained EfficientNet-B2 model [35] to extract feature
representations from input faces, followed by a conformer
encoder [16] to process the video sequence features.

This study explores the potential of diverse and enriched
feature representations extracted from the static domain to
enhance FER in video sequences. Unlike previous studies,
we adopt an ensemble approach, using multiple emotion-
dependent expert models trained for each emotional class for
improved DFER.

B. FEATURE DIVERSIFICATION FOR STATIC FER
In previous studies within the field of emotion recognition,
a persistent issue has been the lack of diversified feature
representations. A common approach for addressing this lim-
itation involves training deep learning models with different
architectures. This strategy aims to enhance feature general-
ization, consequently improving the performance of a general
emotion recognition classifier beyond that of individual net-
works focused on the same task. Jia et al. [22] trained

well-established architectures based on convolutional neural
networks (CNNs) to extract features from images portraying
emotions including AlexNet [25] and ResNet [18]. Subse-
quently, the diversified features were combined to train a
support vector machine (SVM) for the final emotion catego-
rization. The authors demonstrated the superiority of the SVM
classifier over training the individual models for the same task.
Similarly, Agustin et al. [1] independently trained CNN mod-
els including MobileNet [19] for SFER. Features derived from
these pre-trained models were concatenated. A dense layer
was then used to reduce its dimension. The classifier trained
with the concatenated diversified features outperformed each
individual model. Siqueira et al. [36] explored the use of four
identical branches of the same CNN model, all trained for
FER. Diversified features were extracted from different layers
of each model. The heatmaps were employed to illustrate
that the features analyze different facial regions to determine
an emotion. While the generalization of these static features
has been improved for SFER, they do not necessarily imply
improvement for DFER. In contrast, a key concern addressed
in our work is expanding the representation diversity of static
features to enhance FER performance in videos (e.g., dynamic
domain).

C. ENSEMBLE MODELS FOR DYNAMIC FER
Accurate dynamic FER requires features that adeptly capture
subtle facial movements associated with emotions, which can
also be influenced by speech. Traditional methodologies have
relied on handcrafted features. For instance, Chen et al. [6]
utilized a histogram of oriented gradients to extract dynamic
textures from video sequences alongside a geometric feature
derived from facial landmark warp transformations. These
features were then processed using a multiple kernel SVM
approach to predict the class for the entire sequence. How-
ever, while features were designed to encapsulate the temporal
dynamics of facial expressions in videos, the multiple ker-
nel SVM may struggle to capture intricate temporal patterns
within the video sequence. Additionally, researchers have
explored the combination of manually engineered features
and those obtained from deep learning models to charac-
terize facial appearance changes in video sequences. Hao
et al. [17] combined two classifiers; the first is an SVM that
uses texture deformation features known as local binary pat-
terns (LBP) to extract hand-crafted features, and the second
is CNN-based model inspired by AlexNet that extract deep
features directly from the images. Both of these classifiers
are combined using decision-level fusion during prediction.
Similarly, Do et al. [10] introduced an ensemble of three
distinct CNN-based face representation models, each incor-
porating a module to capture sequential information from
videos. Despite the effectiveness of employing a weighted fu-
sion approach, emotion recognition accuracy for short videos
reached values of around 55% . While prior research has
predominantly focused on diverse facial regions and varied
deep-learning architectures, an unexplored avenue remains:
extracting emotion-specific features. We aim to harness the

VOLUME 6, 2025 325



SALMAN ET AL.: MIXTURE OF EMOTION DEPENDENT EXPERTS: FACIAL EXPRESSIONS RECOGNITION IN VIDEOS THROUGH STACKED EXPERT MODELS

FIGURE 1. Diagram of the proposed FER system. The model consists of two parts (a) the static image predictor model, which predicts the facial
expression for a single face/image, and (b) a dynamic video predictor, which aggregates the high-level features extracted from the image predictor to
recognize emotions in the video.

FIGURE 2. Shows the CAM [43] localization applied on the global pooling
layer of MobileNetV2 on different emotion-specific models, on a sample
image in the AffectNet development set.

potential of ensemble techniques and compare them against
current SOTA methodologies for DFER.

III. METHODOLOGY
Our proposed approach aims to diversify the facial features
extracted in the static domain to improve the performance of
categorizing emotions in the dynamic domain. As such, we
split our methodology into two parts: (1) training the static
emotion classifiers (Section A), and (2) training the dynamic
emotion classifiers (Section B).

A. STATIC FACIAL EXPRESSION RECOGNITION
A common approach for SFER is to train a single model to
differentiate between all categorical emotions. This general
SFER model is represented as SFER(xi ) = g( f (xi )), where
an image xi is processed through a feature extractor f (xi )
and a static classifier g(·) to predict the emotion. This model
provides a general space of features extracted from emotional
facial images. However, it may develop biases toward more
prevalent or easily recognizable emotions.

Our proposed approach aims to enhance DFER perfor-
mance by diversifying the static-level feature representa-
tion f (xi ), for which we train individual emotion-dependent
feature extractors, as seen in Fig. 1(a), denoted as
SFERemo(xi ) = gemo( femo(xi )). We use the pre-trained gen-
eral SFER model as a starting point to finetune each emotion-
dependent SFER as a binary classification. This process
adjusts the feature space to be more focused on specific emo-
tions. We train 8 separate models, each specializing in one
emotion.

For instance, SFERhap(xi ) classifies the image as either
happy or not happy. We select all the samples from the target
emotions in the train set for the positive class. We select all
samples from the target class and an equal-sized random set
from other emotions to ensure balanced sets for each training
epoch. This practice mitigates sample bias toward the most
represented classes, and along with traditional image data
augmentation approaches, reduces the risk of overfitting.

By isolating the feature space for each emotion, these ex-
tractors learn fine-grained, emotion-specific characteristics,
allowing the model to capture subtle variations that might
be overlooked by a single general extractor. This specialized
approach enhances the model’s ability to recognize emotions
effectively from the diverse feature space extracted from all
the emotion-specific feature extractors.

In total, we train eight different emotional classifiers. The
outputs from all feature extractors, femo(·), are aggregated to
represent the MoEDE features fMoEDE (·), where femo(·) ∈
R1,280 and fMoEDE (·) ∈ R8×1,280. However, as we employ
eight different models to extract features for a single frame,
we must use small, efficient models. We have chosen the Mo-
bileNetV2 model [34] for this purpose, which is a lightweight
CNN-based model with just over 2 million parameters per
model, totaling just over 17 million parameters across the
eight SFER models. The total number of parameters is still
less than those in other networks, such as the ResNet-50
model (around 25 million parameters [18]). that we use the
standard MobileNetV2 architecture, changing only the 1000-
class classifier output into a 2-class classifier.

B. DYNAMIC FACIAL EXPRESSION RECOGNITION
We freeze the SFER models to extract emotion-dependent
features for training a DFER model. Freezing the weights
is crucial as it prevents the model from overfitting to the
video dataset’s nuances, leveraging instead the generalization
capabilities developed during initial training.

As shown in Fig. 1(b), our proposed architecture in-
corporates two layers of LSTM networks. The first layer
contains 8 LSTMs, which separately process the features
from each emotion-dependent extractor. The 1,280D out-
put vector of each feature extractor femo(·) serves as
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input to an individual LSTM layer, producing a 256-
dimension output vector for each emotion feature extrac-
tor LST Memo( femo(x1), femo(x2), femo(x3), . . .), where x =
x1, x2, . . . represents the image sequence from a video.

These 256-dimension vectors are then concatenated along
the time axis, forming a 2,048-dimension vector (8 × 256)
that represents the aggregated features for each frame. This
vector feeds into another LSTM, referred to as LST Mmix ,
which reduces it to a 256-dimension feature vector. It is im-
portant to note that the different feature extractors’ outputs
are combined only in the LST Mmix; all previous operations
are independently conducted, enabling parallel computing if
needed.

In our initial tests, using a softmax classifier solely at the
last timestep of the LST Mmix led to the model predominantly
backpropagating into only a few of the emotion-specific
LSTMs (LST Memo). To ensure that the backpropagation im-
pacts all the components of the model, we incorporate a
softmax classifier at the last timestep of each emotion-specific
LSTM as auxiliary tasks. This modification aims to improve
learning across all network parts by independently providing
gradient updates to each emotion-specific LSTM layer. Note
that the auxiliary classifiers in the DFER implementation pre-
dict all the emotional classes, not just binary.

IV. RESOURCES AND IMPLEMENTATION
A. RESOURCES
1) AFFECTNET [31]
This comprehensive facial expression database contains over
1 million images sourced from the internet. Unlike video-
based datasets, which are limited in the number of subjects,
this corpus includes approximately 440,000 manually anno-
tated images, which include thousands of different individ-
uals. Each image is categorized into one of eight discrete
emotional categories. Although the annotations include emo-
tional attributes such as valence and arousal, our study focuses
exclusively on these eight emotional labels. On average, the
images in the AffectNet corpus are 425 × 425 pixels in res-
olution. To train our expert feature extractors, we employ a
balanced sampling strategy. In each epoch, we select all sam-
ples from the positive emotion class and an equal number of
images randomly sampled from the other emotions. We utilize
the provided training and development sets included with the
dataset and report our results on the development set, as the
official test set is not publicly available.

2) CREMA-D [5]
The dataset is an audiovisual collection of videos featuring in-
dividuals demonstrating predefined emotional attributes such
as happiness, fear, disgust, anger, sadness, and neutral state. It
comprises recordings from 91 actors (48 male and 43 female)
representing diverse ethnicities and age groups. Each actor
was directed to express specific emotional states while pro-
nouncing a target sentence. At least four raters have annotated
every sample in the dataset across three different modalities:

audio-only, video-only, and audio-visual. The dataset includes
a total of 7,442 clips. We formulate the emotion recognition
task as a six-class problem for the emotions happiness, fear,
disgust, anger, sadness, and neutral state. The distribution
of sentences per emotional class is not uniform. Recordings
were made in a controlled environment with a resolution of
960 × 720 pixels against a green screen to ensure consistent
frontal video capture. For our analysis, the consensus label
is the majority rule from the audio-visual annotations. To
provide a more accurate representation of our model’s per-
formance and further ensure robustness, we have structured
the dataset into five different participant-independent splits,
where each subject is in exactly one set. Each split consists of
training (70% ), development (15% ), and testing (15% ).

B. IMPLEMENTATION DETAILS
In all our experiments, we utilize the ADAM optimizer [11]
with a learning rate of 0.001. For the SFER, we use the
weighted categorical cross-entropy loss using the AffectNet
corpus. For the DFER model, we employ the categorical
cross-entropy loss on the CREMA-D corpus. We prepro-
cess all facial images from the AffectNet and CREMA-D
by extracting the facial region and landmarks using the dlib
toolkit [24]. Using the landmarks, we further rotate the images
so that the location of the eyes is consistent across all images
and parallel with the x-axis, achieving a fronto-parallel view.
The detected landmarks are used to crop the facial region,
ensuring consistent and standardized facial images.

For the SFER model, we use the weights of the pretrained
MobileNetV2 on ImageNet [9]. Starting from this model, we
train an 8-class classifier on the AffectNet by swapping the
classification head from 1000 classes to 8 classes. We train
this model for 60 epochs and use it as the starting point for
each emotion-dependent expert model. To train an emotion-
dependent model, we change the classification head from 8 to
2 classes and fine-tune it using the aforementioned balanced
emotion-dependent subset of the AffectNet for 20 epochs.
Additionally, during training on AffectNet, we apply data aug-
mentation techniques, including up to 15 degrees of random
rotation, 10% of random translation, and 4% of random shear.

For the DFER MoEDE model, we freeze the CNN portion
of the MobileNetV2 network and extract a feature vector with
dimensions equal to 1,280 from each image’s global pool-
ing layer. These vectors, denoted as xv ∈ RNv×1,280, capture
the emotional visual features, where Nv represents the total
number of frames analyzed per sequence and 1,280 reflects
the dimensional feature size extracted from each frame by
the MobileNetV2 architecture. Additionally, we apply zero
post-padding on each mini-batch based on the longest im-
age sequence in the batch. Then, we train the DFER model,
backpropagating the loss through the eight emotion-specific
LSTMs (LST Memo), as well as the fusion LSTM (LST Mmix).
Using this approach, we train five models on the different
splits of CREMA-D corpus. We train for 20 epochs for each
model, saving the best model on the development set based on
accuracy. All the code implemented is in Python and Pytorch
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TABLE 1. Detailed Performance Metrics by Emotion (Percentage) for Each MobileNetv2 Model Trained on a Binary Problem: Positive or Target Emotion,
and None Positive (negative) Emotion Samples. (P: Positive Emotion, N: Negative Emotions)

and trained on a single RTX 4060, taking slightly over one day
to train all five models, including the AffectNet pre-training
(starting from the ImageNet weights), highlighting the train-
ing efficiency of our model. During evaluation, we report the
mean metrics of the test sets across the five splits. Addi-
tionally, we assess statistical significance using a one-tailed
matched-pair t-test, dividing each split into five sets for a total
of 25 sets. Significance is determined at a p-value < 0.05.

C. COMPUTATIONAL COMPLEXITY
The complexity of our model is reported in terms of the
number of parameters and computational requirements. Each
feature extractor in the model is based on the MobileNetV2 ar-
chitecture, comprising 2.2 million parameters. A total of 17.79
million parameters are optimized for the eight experts in our
model. Additionally, the fusion model, which integrates the
representations of these experts, contributes with 14.98 mil-
lion parameters. Overall, the MoEDE framework comprises
32.76 million parameters, requiring approximately 122 MB
of storage when using 32-bit floating-point precision.

In terms of computational demand, processing 2 seconds of
video data (60 frames) with MoEDE requires approximately
0.32 teraFLOP (TFLOP). For reference, current smartphones
such as the iPhone 15 Pro, can handle around 2.15 TFLOP per
second.

Furthermore, we anticipate that MoEDE can benefit signifi-
cantly from efficient parameter fine-tuning techniques, such as
low-rank adaptation (LoRA) [20]. Since all eight experts are
derived from a shared base model and fine-tuned for specific
emotional tasks, employing low-rank weight updates could
reduce the model size by over 7x.

V. EXPERIMENTAL RESULTS
This section evaluates our proposed SFER and DFER mod-
els. Initially, we report the F1-score and accuracy for our
eight-class and two-class SFER models trained on the Affect-
Net corpus. We demonstrate the effectiveness and diversity
of the different models by comparing the features extracted
from each emotion-dependent expert. Next, we evaluate our
dynamic models by analyzing the output from each emotion-
specific feature extractor on the CREMA-D corpus. Finally,
we evaluate the performance of our proposed MoEDE DFER
model, comparing the results with four SOTA baselines.

TABLE 2. Feature Extractor Performance Implemented With the
MobileNetV2, Trained on an 8 Class Problem on AffectNet. Metrics Show
the AffectNet 8 Class-Balanced Validation Set

A. SFER RESULTS
For the SFER, we first evaluate the performance of the Affect-
Net MobileNetV2 model trained on eight classes. As shown
in Table 2, the model achieves a respectable 61.3% F1-score
and 61.3% accuracy on the development set of the AffectNet
corpus. This performance is comparable to the slightly larger
EfficentNet-B0 model [40] trained by Savchenko et al. [35],
which achieved an F1-score of 61.3% . Additionally, our
model achieves a comparable score for both precision (61.6%
) and recall (61.3% ), showing that, overall, the model makes
the same number of type 1 and type 2 errors. Furthermore,
the table shows that even with the weighted categorical cross-
entropy loss, some emotions achieve a high F1-score (e.g.,
happiness 73.8% ), and some emotions achieve a low F1-score
(anger 57.5% ). Surprisingly, the class with the lowest F1-
score is neutral, with an F1-score of 53.0% , while having the
second highest number of training samples.

Next, we evaluate the binary emotion-dependent expert
models. These models are binary classifiers, targeting a spe-
cific emotion as a positive sample (P) while treating all
remaining samples as negative examples (N). As we explain
in Section IV, we use the development set of the AffectNet
corpus to evaluate our models. This set is balanced across
emotions, including 500 samples per class. Therefore, the
positive class has 500 samples, and the negative class has
3,500 samples.

Table 1 displays the evaluation metrics. We observe sig-
nificantly higher F1-scores for the positive class (P) than the
negative class (N). Specifically, the average F1-score for the
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TABLE 3. MoEDE Feature Extractor Performance Implemented With the
MobileNetV2 on the AffectNet Validation Set. We Perform Two
Experiments. FFE: Frozen Feature Extractors. FTFE: Fine-Tuned Feature
Extractors. (P: Precision Rate, R: Recall Rate, F1: Macro F1-Score, Ac:
Accuracy)

TABLE 4. Cosine Similarity Between the Individual Expert Classifiers
SFERemo(·) on AffectNet Development Set

positive class (P) across all emotions is 84.13% , and for the
negative class (N) is only 14.44% . This disparity indicates
a bias due to data imbalance, further emphasized by the dif-
ferences in F1-macro and F1-weighted scores. The F1-macro
score is 49.29% . This metric is a weighted average across
emotions and is considerably lower than the unweighted F1-
weighted score (75.42% ). Individually, the F1-score for each
targeted emotion is relatively high compared to the eight-class
model results (see Table 2). For example, anger achieves an
F1-score just above 90% , a significant improvement over the
57.5% observed in the eight-class model. Conversely, neutral
records the lowest F1-score in both the binary and eight-class
models, at 75.91% and 53.0% , respectively.

We want to compare two alternative implementations for
fusing the eight emotion-dependent experts: frozen feature
extractors (FFE), where the error does not propagate in
the emotion-dependent feature extractors, and fine-tuned fea-
ture extractors (FTFE), where the error propagate in the
emotion-dependent feature extractors. We evaluate these two
implementations to predict the eight classes in the Affect-
Net corpus. Both models share the same architecture, which
includes a fully connected layer that downsamples each 1,280-
dimension feature into a 256-dimensional vector, followed
by a concatenation of all features to form a 2048-dimension
vector (8 × 256). The last layer is an eight-class softmax layer
to predict emotions on the AffectNet corpus. Both models
are trained similarly to the eight-class model described in
Section III. Table 3 reports the evaluations of these models.
We observe that the overall F1-score and accuracy of the fully

trained model (FTFE) are significantly higher than those of the
partly trained model (FFE). FTFE achieves overall improve-
ments of 4.5% (absolute) in F1-score and 3.8% (absolute) in
accuracy, respectively. This performance gain is attributed to
the FTFE’s ability to backpropagate the weighted loss through
all the layers, unlike in the FFE model. However, for cer-
tain classes, such as happiness, neutral, and sadness, the FFE
model shows higher accuracy, underscoring the presence of
data imbalance, as these are the three classes with the most
training samples.

B. DFER RESULTS
The first block of results from Table 5 illustrates the per-
formance of different configurations of our MoEDE model.
We highlight the impact of integrating auxiliary classifiers in
emotion-specific LSTM layers (Section B), comparing Frozen
Feature Extractors (FFE) and Fine-Tuned Feature Extractors
(FTFE), as listed in Table 3. Our findings reveal that aux-
iliary classifiers boost the F1-weighted score to 78.9% for
FFE (2.1% absolute increase) and to 73.5% for FTFE (1.6%
absolute increase). Interestingly, despite lower performance
on the AffectNet corpus, the model FFE achieves a higher F1-
weighted score of 78.9% in dynamic settings, outperforming
the results from the FTFE model (77.9% ). This result under-
scores an important aspect: superior image-based classifiers
do not necessarily translate to better video-based classifiers,
reflecting the distinct and additional complexities inherent in
video data.

The second block of results in Table 5 corresponds to
the results obtained using the auxiliary classifiers. Our pro-
posed MoEDE DFER, implemented with FFE and auxiliary
classifiers, performs better than the eight auxiliary classi-
fiers. This trend is consistent across all metrics and emotions,
demonstrating the efficacy of employing an ensemble of ex-
pert classifiers that rely on more diversified features. We
observe an improvement in the F1-macro metric equal to
4.4% (absolute) compared to the best-performing individual
expert classifier (i.e., fear). An additional insight regarding
the performance of the individual expert classifiers is that,
although inferior to our proposed MoEDE model, their per-
formances are still high when evaluated on the six-class
problem in the CREMA-D corpus. This observation suggests
that each emotion-based feature extractor is not necessarily
biased toward recognizing a single emotion. Instead, they have
discriminative information to generalize to multiple emotions
after fine-tuning the models for DFER.

The third block of results in Table 5 presents the perfor-
mance obtained by the baselines. Our first baseline lacks the
improvements proposed in this work: emotion-dependent fea-
ture extractors and auxiliary classifiers. This baseline, referred
to as single feature extractor in Table 5, considers as a feature
extractor the static classifier trained on the eight classes of
the AffectNet corpus, as explained in Section IV. This fea-
ture extractor was then fine-tuned for DFER under the same
conditions used across all models. Our proposed MoEDE ap-
proach, which was implemented with auxiliary classifiers and
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TABLE 5. Performance Metrics for DFER on the CREMA-D Corpus. The First Block Presents Results for Our Porposed MoEDE Model With and Without the
Auxiliary Classifiers, as Well As, Using the Different SFER Emotion-Dependent Experts (FFT and FTFE, as Noted in Table 3). The Second Block Reports the
Individual Performance of the Auxiliary Classifiers Using the Emotion-Dependent Expert Feature Extractors With FFE Models. The Last Block Shows
the Performance of Using a Single Feature Extractor (Table 2) and Four Comparable State-of-The-Art Approaches in DFER

an FFE strategy, is significantly better than this baseline across
metrics and emotions. The other four baselines correspond
to approaches proposed in previous studies: T-LSTM [21],
AuxFormer [12], [13], UAVM [15], and VAVL [14] (we
describe these methods in Section II). While these models
are multimodal, we consider their vision-only implementa-
tions. The comparisons are fair, using the five splits of the
CREMA-D corpus using the same evaluation metrics. The
T-LSTM model [21] trained individual branches for audio and
visual modalities, along with a multimodal fusion module, all
employing a transformer-based architecture. To enhance the
learning of temporal dependencies, an LSTM layer was incor-
porated before the final linear layer of all blocks. We utilize
the visual branch of the pre-trained T-LSTM model to eval-
uate our testing video sequence. Notably, our best approach
outperformed all metrics across all classes, substantially im-
proving 16.8% in F1-macro. The AuxFormer framework [12],
[13] allows the evaluation of individual modalities despite
being trained based on audio-visual data. The performance
of our best MoEDE model outperforms all metrics for all
classes, with a notable improvement of 5.2% in F1-macro.
For the UAVM model [15], we employ its visual-specific
feature extractor followed by its classification layer to eval-
uate the CREMA-D test set. The performance of the UAVM
model is similar to the results observed for the AuxFormer
framework. Our best MoEDE approach obtains a 5.3% (ab-
solute) improvement in F1-macro over the UAVM model.
The VAVL approach [14] currently has SOTA performance
on the CREMA-D. Designed as a versatile audio-visual learn-
ing framework capable of accommodating single or multiple
modalities, VAVL enabled us to evaluate our best approach
using just the visual modality. Our best MoEDE approach
closely matches or exceeds the VAVL’s performance across all
average metrics and five of the six emotional classes, where
fear is the exception. These results show the competitive

TABLE 6. Cosine Similarity Between the Last LSTM Step of Different
Emotional Feature Extractors (LST Memo)

performance achieved by our proposed strategy, indicating the
need for feature diversity and generalization.

Finally, to analyze the diversity of the features, we compute
the cosine similarity among the individual expert classi-
fiers by using the 256-dimension vectors extracted after the
first LSTM layer of each auxiliary classifier. Table 6 shows
the values. The cosine similarities are around 0, showing
the separation between the auxiliary classifiers. This find-
ing highlights a significant decrease in similarity among the
emotion-dependent classifiers fine-tuned for the DFER task.
The average cosine similarity for the static domain reported
in Table 4 is around 0.33. This observation highlights the need
for more diverse representations to capture the complexity of
emotions in the dynamic domain effectively.

C. INDIVIDUAL CONTRIBUTION OF THE EMOTION
DEPENDENT EXPERTS
To assess the contribution of each component in our MoEDE
architecture, we conduct an ablation analysis on the CREMA-
D dataset. Specifically, we evaluated the model’s performance
by systematically excluding one expert at a time, resulting
in eight different configurations, each omitting one of the
eight expert classifiers. The performance metrics, presented in
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TABLE 7. Performance of MoEDE and Excluded experts/models on Various
Metrics for Non-Posed and Spontaneous Expression Recognition

TABLE 8. Performance Comparison of MoEDE and Other Contemporary
Methods on MSP-IMPROV for Non-Posed and Spontaneous Expression
Recognition Scenarios

Table 7, are based on the mean results from five independent
runs.

Table 7 shows that the MoEDE model consistently achieves
the highest overall accuracy and F1-scores. However, in some
cases, certain configurations—where one expert is excluded—
surpass the complete model’s performance in specific emo-
tions. For example, configurations lacking one expert show
improvements of 0.3% in happiness, 0.6% in fear, and 0.2%
in anger. These variations indicate that, while each expert
significantly contributes to the model’s overall performance,
the exclusion of any one expert often results in a slight drop in
the model’s metrics. This result emphasizes the importance of
each expert in our architecture, with each component playing
a critical role in optimizing performance.

D. GENERALIZATION TO OTHER DATASETS
Our MoEDE model leverages feature extractors trained on the
AffectNet dataset, which comprises a wide range of ‘in-the-
wild’ expressions. This design enables the model to generalize
effectively to non-posed and spontaneous expression recogni-
tion scenarios. To validate this capability, we evaluate MoEDE
on the MSP-IMPROV dataset [2], which captures emotional
behaviors during spontaneous dyadic improvisations. For con-
sistency, we use the same hyperparameters applied in our
CREMA-D experiments.

Table 8 presents the performance of MoEDE compared to
other popular methods and our single feature extractor (SFE)
baseline on the MSP-IMPROV corpus. The reported values
represent the mean results across six independent runs, each
using subject-independent splits. MoEDE achieves the high-
est accuracy at 69.3% , outperforming the next best model,

UAVM, by 1.8% . It also attains the highest score on F1-
weighted metrics.

While MoEDE’s F1-macro score is lower than the results
obtained by the T-LSTM and VAVL models, these models
exhibit approximately 3% lower accuracy. We hypothesize
that fine-tuning hyperparameters specifically for the MSP-
IMPROV development set could further improve MoEDE’s
performance, a strategy likely employed by the other models.

VI. CONCLUSION
This paper presented our proposed MoEDE method that lever-
ages emotion-dependent feature extractions to enhance the
diversity of facial features in DFER. Our findings indicate
the potential of fine-tuned, emotion-dependent models to im-
prove the classification of facial expressions in videos across
diverse emotional states. These results underscore the impor-
tance of model architecture choices and training strategies in
the field of emotion recognition. The results show the effec-
tiveness of our approach on the CREMA-D datasets, showing
an F1-macro improvement between 0.5% and 16.8% (abso-
lute) when compared to SOTA approaches. Additionally, we
showed that by fine-tuning and improving the feature extractor
in the static domain, the F1-macro of our proposed DFER
approach drops by 1% . This result highlights that improved
features designed to improve SFER, do not necessarily im-
prove DFER models.

For future work direction, we plan to explore different
approaches to integrating our DFER into multimodal audio-
visual systems. Our results demonstrate that our approach can
rival the performance of multimodal models when evaluated
on a single modality. Therefore, we hypothesize that incor-
porating our contributions into multimodal systems for FER
can result in even more effective systems. Additionally, we
want to explore using video or image-based gating or routing
mechanisms to reduce the computational cost of our proposed
approach by using a subset of the expert models at the frame or
video level. Finally, although the MoEDE model is primarily
designed for recognizing emotional categories, we believe it
also holds potential in the recognition of other emotion-related
tasks such as detecting micro-expression.
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