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Abstract
Zero-shot performance of state-of-the-art automatic speech

recognition (ASR) significantly declines on pediatric patients
with speech sound disorders (SSDs) due to deviations in pho-
netic pronunciation. To address this, we train a subject-agnostic
ASR system on 77 minutes of pediatric SSD transcribed data,
which improved zero-shot ASR by 67.48%. Given the scarcity
of data and privacy concerns with children’s data, we study the
suitability of voice conversion (VC) and text-to-speech (TTS)
to synthesize disorder-reflective samples. Our ASR system sur-
passed zero-shot by 71.72% when leveraging TTS and showed
potential for privacy preservation when using VC. Notably, pre-
training on synthetic samples alone reduces the required real
SSD data to 50 minutes (i.e., 65% of the data), while achieving
metrics comparable to the model finetuned with all SSD sam-
ples. This study enables ASR technologies to assist individu-
als with SSDs and facilitates automatic transcription of speech
therapy sessions.
Index Terms: speech disorders, automatic speech recognition,
voice conversion, children speech.

1. Introduction
Speech is fundamental to human communication, but its effec-
tiveness can be impeded when individuals face challenges in
producing or articulating speech sounds [1, 2]. SSDs include
motor-speech disorders (e.g., apraxia or dysarthria), structural
anomalies (e.g., cleft lip and palate or craniofacial differences),
fluency and voice disorders [3]. These conditions prevail in
early childhood [4]. Abnormal unintelligibility in pediatric pa-
tients with SSDs significantly impacts their social interactions,
emotional well-being, and overall quality of life [5].

Learning-based systems for face and speech analysis ex-
hibit limited performance for individuals with SSD [6]. This
is particularly true for ASR systems, which underperform be-
cause they are trained predominantly on typically developed
(TD) adult speech, failing to capture the pronunciation variabil-
ity in children with SSDs [7]. Additionally, diagnosis and treat-
ment of SSDs rely on auditory perceptual analyses conducted
by speech-language therapists, which are prone to intra- and
inter-rater variability and require significant time and expertise
from clinicians [8, 9]. A reliable ASR system tailored for pedi-
atric patients with SSDs could reduce the need for manual tran-
scription and support more standardized approaches to speech
evaluation. However, the scarcity of publicly available corpora
focused on children with SSDs poses a significant challenge,
depraving the system generalizability.

We explore the potential of speech generation techniques to
synthesize pediatric disordered speech; specifically, we explore
VC and TTS methods. As a baseline, we finetune the speech

foundation model Whisper [10] to enhance ASR performance
on speech from children with SSDs. We then compare this base-
line to models trained on real and synthetic SSD samples. Addi-
tionally, we adopt a two-stage progressive fine-tuning approach.
The first stage trains the ASR model exclusively on synthetic
samples. The second stage further fine-tunes the model using
real SSD data, leveraging the synthetic-based model as a start-
ing point. This method aims to reduce the amount of real SSD
data required for effective training of an ASR system.

Our approach to synthesizing SSD speech using TTS in-
volves controlled guidance of style acoustic features from SSD
recordings, capturing characteristic pronunciation deviations.
During synthesis, the generated SSD sample is also influenced,
to a lesser extent, by the target lexical information. This en-
sures the synthesized speech retains the acoustic style of the
source SSD utterance while preserving natural prosody. For
VC, the lexical content of the generated SSD sample is deter-
mined solely by the source utterance. We use real SSD sam-
ples as the source and incorporate disentangled speaker identity
features from children without SSDs. VC effectively modifies
speech characteristics such as timbre and prosody while pre-
serving the disordered pronunciation of the original SSD utter-
ance. We explore ways to leverage TTS and VC techniques to
improve SSD-ASR performance.

Our results show that training a subject-independent ASR
system with 77 minutes of transcribed SSD audio improves
WER by 67.49% over Whisper’s zero-shot performance. Us-
ing real and TTS-based SSD further enhanced ASR to 70.64%.
Progressive finetuning with synthetic TTS followed by real SSD
reduced the need for real data to 50 minutes. Training with the
VC strategy achieves a WER of 37.34%, similar to the base-
line, and improves to 33.74% with progressive finetuning. Since
VC still requires real source SSD samples to synthesize the de-
sired linguistic content, it holds potential for privacy protection,
but its use case for improved ASR is currently limited. This
study highlights the promise of voice generation techniques for
augmenting ASR systems for pediatric SSD patients, improving
speech assessment while reducing manual effort.

2. Related works
Recent advancements in ASR have largely benefited from large-
scale deep learning models. However, these improvements of-
ten neglect speakers with atypical speech patterns. Efforts to
adapt pre-trained models through fine-tuning on sparse datasets
have included adult speakers with speech disorders such as
amyotrophic lateral sclerosis [11], dysarthria [12, 13, 14, 15],
and impairments caused by cerebral palsy, Parkinson’s disease,
hearing loss, or ataxia [16, 17]. For pediatric populations, pre-
trained models have been adapted to assess reading miscues
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Figure 1: TTS voice generation and voice conversion pipelines
used as data augmentation techniques for improved ASR on pe-
diatric SSD patients.

[18], mitigate age and speaker bias [19], and evaluate pronunci-
ation [20], with applications to early autism diagnosis [21].

Given the scarcity of datasets representing atypical speech,
DA has been explored to enhance ASR performance. Non-
generative DA techniques, such as vocal tract length normal-
ization, have been applied to improve children’s ASR [22]. In
contrast, generative DA methods have been explicitly trained to
synthesize speech from typically developing children or adults
with dysarthria. Zhang et al. [23] improved child speech
recognition through child-to-child voice conversion, while Mat-
suzaka et al. [24], Hermann et al. [14], and Leung et al. [15]
leveraged TTS for dysarthric speech recognition. Additionally,
Jin et al. [12] trained an adversarial generative model to syn-
thesize dysarthric speech. In contrast, our work explores the
one-shot performance of systems pre-trained on large speech
corpora to generate pediatric SSD samples. We analyze the op-
timal setup and limitations of using pre-trained voice generation
techniques, aiming to reduce the need for SSD-specific data.

For children with SSD, DA approaches have mainly been
limited to compositional augmentation by mixing words [19].
However, research on voice generation techniques for synthe-
sizing disordered pediatric speech remains scarce. This gap
highlights the need for further investigation into robust method-
ologies for training ASR systems tailored to this population.

3. Methodology
We present our approach to using voice generation techniques
to preserve the pronunciation deviation patterns characteristic
of pediatric SSD speakers. This section outlines the specific se-
tups implemented for voice conversion and TTS synthesis. Ad-
ditionally, we detail the preprocessing steps applied to the pedi-
atric SSD corpus and the fine-tuning configurations employed
for adapting Whisper to the SSD-ASR task.

3.1. Pediatric SSD corpus

We utilize the UltraSuite corpus [25], which includes ultrasound
and acoustic data from child speech therapy sessions. This cor-
pus encompasses three subsets of common childhood speech
disorders, such as phonological delay, phonological disorder,
inconsistency, vowel and articulation disorders, and childhood
apraxia of speech. Participants in the sessions range from 5 to
12 years old. They articulate words, non-word phonemes, and
sentences. For our study, we focus exclusively on words and

short phrases with available ground-truth transcriptions. We
used data from subjects 1 and 4 from the UXSSD subset, sub-
jects 1–20 from UPX, and subjects 1–37 from UX2020. Since
the sessions involve speech from both the speech-language ther-
apist (SLT) and the child participants, discrepancies between
the provided transcriptions and the actual audio content are
common. Therefore, we manually corrected the transcriptions
and timestamps for 2,429 recordings by removing SLT speech
segments and incorporating repeated words into the transcripts
where necessary. Praat [26] was used to visualize the frequency
representation of utterances and export timestamps and tran-
scriptions. We refer to these recordings as SSD data.

The sentences are designed to evaluate speech production
rather than forming coherent messages. The training set con-
tains 77 minutes of speech spoken by 80 subjects consisting of
1,492 utterances, with 429 unique sentences. The development
set comprises 30 minutes of speech from three subjects consist-
ing of 552 utterances, with 160 unique sentences. The testing
set contains 20 minutes of speech from five subjects, with 388
utterances and 34 unique transcript occurrences. No speakers
were shared across our training, development, and testing sets.

3.2. TTS for SSD data augmentation (TTS-SSD)

We utilize StyleTTS2 [27] trained on LibriTTS for TTS genera-
tion in a one-shot speaker adaptation setup. The key objective is
to include acoustic and lexical patterns similar to those observed
in the SSD data. The model requires a source speaker record-
ing of at least three seconds to capture the speaking style. As
depicted in Figure 1a, speech style is modeled through prosody,
acoustics, and pitch, which are extracted from the source SSD
utterance and represented as a latent random variable. This style
extraction process captures pronunciation errors by learning the
acoustic characteristics of the source speech. During genera-
tion, the target lexical content is encoded at the phoneme level
using acoustic and prosodic text encoders. These encoders, to-
gether with the latent style variable, guide the diffusion sampler
to predict prosody and acoustic representations for the target
text. Finally, a GAN-based decoder synthesizes the waveform
by combining the style and text representations.

The parameters α and β (ranging from 0 to 1) control the
degree of guidance from the source style or the target text. We
set β = 0.4 to maintain similarity to the source style while al-
lowing natural prosody based on the target text. We set α = 0
to ensure the synthesized speech retains the acoustic character-
istics of the source SSD sample. For generation, we use five
diffusion steps and an embedding scale of 1. We consider only
four source SSD recordings (2 female, 2 male) from the training
set, chosen for their low noise levels and representative speech
disorder characteristics. For the target texts, we select sentences
with a single occurrence in the corpus. We synthesize one audio
per sentence by randomly assigning one of the four extracted
speaking styles from the SSD samples. By synthesizing only
unique text occurrences, each one leveraging the style of one of
the four source speakers with SSD, our strategy contributes to a
more linguistically balanced augmented dataset.

3.3. Voice Conversion for SSD augmentation (VC-SSD)

We employ FreeVC [28] trained on VCTK, a one-shot voice
conversion system that generates speech with the vocal char-
acteristics of a target speaker while preserving the linguistic
content of a source utterance, without requiring text guidance.
Since the synthesized utterance retains the linguistic content
of the source, and the word sequences in the SSD corpus are



designed for speech therapy, we use SSD recordings from the
training set as source utterances. As target utterances, we use
samples from typically developing children in the MyST dataset
[29] (Figure 1b). Through experimentation, we observed that
FreeVC effectively modifies speech characteristics such as tim-
bre and prosody while maintaining the disordered speech pro-
nunciation of the SSD source utterance. This behavior enables
the use of the generated samples to train an ASR model for SSD.

The model disentangles linguistic content from the SSD
source utterance by compressing feature representations ex-
tracted using WavLM [30], a self-supervised pre-trained model
for speech-related tasks, in conjunction with a normalizing flow
block. A TD child speech is set as the target utterance. This
sentence is processed using a pre-trained speaker encoder based
on a convolutional neural network bi-directional long short-
term memory architecture with attention layers, which outputs
a speaker embedding. Finally, the speech generation decoder is
a conditional variational autoencoder pre-trained for TTS.

3.4. ASR model fine-tuning

By leveraging Whisper’s pre-trained on a large corpus of typi-
cally developed adult speech, we aim to transfer its knowledge
to recognize general speech patterns. After finetuning with SSD
data, we expect to improve its recognition of pronunciation de-
viations observed in our target population. All utterances used
for finetuning are resampled to 16KHz and padded to a fixed
length of 30 seconds to be aligned with the architecture’s pro-
cessing constraints. The feature extractor transforms raw audio
into log-mel spectrograms comprising 80 frequency bins com-
puted in 25-millisecond windows with a 10-millisecond stride.
The transcripts undergo text normalization to remove upper case
letters and special characters and are processed by a pretrained
BPE tokenizer. During finetuning, weights of both the encoder
and decoder are retrained since the encoder needs to be adjusted
to the different acoustic characteristics of SSD utterances, and
the decoder should learn the specific sequences of words used
for speech assessment, which are not commonly found in nat-
ural speech. Additionally, the list of tokens excluded during
pre-training is reset before fine-tuning for better adaptation.

4. Experiments and Results
Our experiments investigate the effectiveness and suitability
of speech generation for pediatric SSD. We evaluate multiple
strategies by assessing their ability to enhance ASR on pediatric
SSD speech. This section details the experimental setups and
presents an analysis of the results for each experiment. The ex-
periments include evaluating Whisper’s zero-shot performance
on SSD data, single-stage fine-tuning with real and/or synthetic
SSD data, and a progressive fine-tuning approach that leverages
a checkpoint pre-trained on synthetic SSD data.

4.1. Whisper Zero-Shot Performance on SSD (Exp 1)

The first experiment is to evaluate different Whisper model sizes
for zero-shot performance on pediatric SSD speech. As shown
in Table 1 for Exp 1, all five Whisper models, varying in number
of parameters, exhibited extremely poor performance on pedi-
atric SSD samples. This result highlights a severe mismatch
between the training data – primarily consisting of adult speak-
ers with typical speech – and the pediatric SSD samples used for
evaluation. Among the models trained exclusively on English
denoted with ‘.en’, Whisper medium.en (Wm) achieved the best
performance. Further increasing model size by using Whisper

Table 1: Performance metrics for ASR on the testing set of the
pediatric SSD corpus. The right arrow → denotes finetuning.

Model WER CER
Exp 1: Zero-shot performance

Whisper tiny.en 140.69 132.72
Whisper base.en 166.72 129.77
Whisper small.en 126.59 90.65
Whisper medium.en ‘Wm’ 112.99 77.33
Whisper large 119.96 81.86

Exp 2: Single finetuning on synthetic samples

Wm → TTS 87.93 ± 0.81 36.06 ± 1.74
Wm → TTS-SSD 80.06 ± 0.74 46.38 ± 2.41
Wm → VC-SSD 37.34 ± 0.39 20.40 ± 0.30

Exp 3: Single finetuning on real samples

Wm → SSD ‘Baseline’ 36.75 ± 0.41 19.76 ± 1.08
Wm → TD-Child 141.63 ± 1.94 100.81 ± 1.22

Exp 4: Single finetuning on real and synthetic samples

Wm → (SSD + VC-SSD) 36.29 ± 0.25 18.96 ± 0.13
Wm → (SSD + TTS)* 35.34 ± 0.25 17.78 ± 0.32
Wm → (SSD + TTS-SSD)* 33.19 ± 0.25 16.94 ± 0.07

Exp 5: Progressive finetuning

Wm → TD-Child → SSD 40.35 ± 0.10 21.10 ± 0.13
Wm → VC-SSD → SSD* 33.74 ± 0.17 18.26 ± 0.17
Wm → TTS-SSD → SSD* 31.62 ± 0.34 16.35 ± 0.25

SSD: Sound Speech Disorder, VC: Voice Conversion, TTS: Text-to-Speech
TD: Typically Developed. (*) Denotes a statistically significant difference based

on McNemar’s test compared to the baseline (α < 0.05).

large, trained on multilingual speech, did not lead to improve-
ments. Based on these findings, we use the pre-trained weights
of Wm to initialize all subsequent experiments.

4.2. Single Finetuning on Synthetic Samples (Exp 2)

Our second evaluation is to finetune Wm with synthetic speech.
We start with employing a standard TTS with an adult voice
sourced from a subset of the UltraSuite project [31]. All training
transcripts of the SSD corpus were synthesized through TTS, al-
lowing the adaption of the Wm model to the linguistic content of
the task, without introducing pronunciation deviations. Table 1
presents the results of fine-tuning Wm on these TTS-generated
samples (Wm → TTS) (Exp 2). The model shows an improve-
ment of 25.06 WER points compared to zero-shot performance,
demonstrating that adapting Whisper to the training linguistic
content of SSD assessment is beneficial.

Both the acoustic differences in disordered speech produc-
tion and the linguistic content for speech therapy require spe-
cialized training to improve the poor zero-shot performance.
We hypothesize that performance could be further improved by
incorporating both the linguistic and pronunciation characteris-
tics of pediatric SSD speech. As explained in Section 3.2, the
style extracted from one of four randomly selected SSD source
utterances was used to synthesize all training transcripts of the
SSD corpus. The row Wm → TTS-SSD in Table 1 shows that
incorporating pronunciation deviations from SSD utterances in
the TTS synthesis, in addition to the specific linguistic content,
further improved WER by 7.87 points. Although the perfor-
mance remains far from sufficient for practical SSD transcrip-
tion, the model trained with synthetic TTS-SSD samples pro-
vides a better starting point for fine-tuning with real data, as it
brings parameters closer to the linguistic and acoustic domain
of SSD speech by using only four utterances as a reference.



Voice conversion cannot be used to synthesize SSD samples
solely from transcripts, as the transformed audio retains the tex-
tual content of the source utterance while adopting the acoustic
characteristics of the target utterance. To explore the poten-
tial of voice conversion for augmenting SSD data, we converted
all training samples of the SSD corpus by randomly selecting
one of four child voices with typical speech. The results in
row Wm → VC-SSD of Table 1 show that finetuning Wm with
only voice-converted samples yields performance metrics only
slightly worse than those of the ‘Baseline’ model trained exclu-
sively on real SSD utterances (Wm → SSD). Although VC-SSD
is not directly comparable with TTS-SSD -which do not require
real SSD utterances—these findings indicate that voice conver-
sion primarily alters speaker identity while preserving the lin-
guistic and pronunciation characteristics of children with SSD.

4.3. Single Finetuning on Real Samples (Exp 3)

Our third evaluation determines the benefits of finetuning the
models with real SSD. We establish a baseline by fine-tuning
Wm with all available real SSD training samples. The row Wm
→ SSD in Table 1 shows that this model achieves a mean WER
of 36.75 on the SSD test set. Additionally, to demonstrate that
the observed ASR improvement over zero-shot performance is
not solely due to adaptation to pediatric speech but also to the
presence of speech disorders, we finetune the Wm model using
only TD children’s speech from the MyST dataset, following
the data splits of Fan et al. [32]. The resulting model achieved
a WER of 10.18 and a character error rate (CER) of 5.78 on
the MyST test set. These results are aligned with the dataset
benchmarks [32]. However, when this model was used for in-
ference on pediatric SSD test samples the performance is poor,
as shown in row Wm → TD-Child of Table 1, confirming that an
ASR system trained exclusively on TD children’s speech does
not generalize well to pediatric SSD utterances.

4.4. Single Finetuning on Real & Synthetic Samples(Exp 4)

The fourth experiment evaluates the effectiveness of voice con-
version versus TTS while still incorporating real SSD samples
in the fine-tuning process. After experimenting with different
amounts of augmented data, we found that generating samples
only for sentences with a unique occurrence in the training set
(429 utterances) contributed more to dataset balance than aug-
menting the entire training set. As shown in Exp 4 of Table 1,
VC did not yield a statistically significant improvement over the
baseline. This is primarily because VC preserves the deviated
pronunciation of the source SSD speech, while the character-
istics transferred from the target utterance mainly contribute to
speaker-specific features such as pitch and tone. Consequently,
the VC-generated samples are redundant in terms of disordered
pronunciation, as the Wm model may not rely on voice charac-
teristics for improved ASR performance.

TTS captures a latent variable representing the style of the
source speaker but does not reconstruct the linguistic content.
Instead, the target text embeddings guide the diffusion and de-
coding processes, introducing variability in the atypical speech
patterns. Additionally, we used standard TTS to synthesize the
same target text and finetuned Wm → (SSD+TTS). As shown in
Exp 4 of Table 1, standard TTS for data augmentation improved
the baseline by 1.41 WER points but did not surpass the perfor-
mance achieved using the TTS-SSD-augmented samples, which
reached a WER of 33.19 –improving the baseline by 3.56 WER
points. Notably, this improvement required only four utterances
of different speakers with SSD as sources.
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Figure 2: ASR performance improvement (WER, CER) as a
function of the percentage of real SSD data added using the
progressive finetuning strategy.

4.5. Progressive finetuning (Exp 5)

The fifth evaluation further enhances ASR performance on pe-
diatric SSD speech by employing a progressive finetuning strat-
egy. The model is first initialized using a checkpoint trained
on synthetic SSD samples, allowing it to adapt to the linguistic
content and pronunciation patterns before presenting the real
data. Despite achieving a WER of 37.87 in Exp 2, the model
trained on synthetic VC-SSD samples shows an additional 4.13-
point WER improvement when a second finetuning stage is ap-
plied. The best performance is achieved when the model trained
on TTS-SSD samples undergoes further finetuning with all real
SSD training samples, reaching a WER of 31.62, the best per-
formance observed in this study. This approach, denoted as
Wm → TTS-SSD → SSD in Table 1, is particularly noteworthy
because it required only four real SSD utterances to generate
the TTS-SSD set, yet demonstrated the potential of progressive
finetuning to surpass the baseline by 5.13 WER points.

Finally, we explore the trade-off between the amount of real
SSD data and ASR performance. Figure 2 illustrates WER and
CER trends as the amount of real SSD training data is reduced in
the progressive finetuning with the Wm → TTS-SSD model. A
50% reduction (39 min) increases WER by 4.6 points compared
to the baseline. However, retaining 65% of the real SSD data
(50 min) achieves a WER of 37.35, only 0.6 points above the
baseline, demonstrating that our approach can reduce real data
requirements without severely impacting ASR performance.

5. Conclusions
This work explored VC and TTS in generating pediatric speech
utterances for ASR training. VC preserves the pronunciation
deviations of source SSD speech while altering speaker traits
such as pitch and tone. This strategy is promising for speaker
anonymization but offers limited benefits for data augmenta-
tion. In contrast, TTS captures a source style representation
with SSD to guide synthesis, introducing subtle variability in
atypical speech patterns as part of the diffusion process, which
enhances ASR robustness. Modifying the voice of an SSD
speaker while preserving articulation features increases inter-
speaker variability in VC, whereas TTS generates novel speech
from the same speaker identity, introducing intra-speaker vari-
ability. We observe our best ASR performance with a progres-
sive finetuning strategy that starts with a model finetuned with
synthetic TTS data followed by real SSD samples, achieving
a WER of 31.62. This approach matches the baseline perfor-
mance using only 50 minutes of SSD data (i.e., 65% of the
training data).
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