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Abstract

The Interspeech 2025 speech emotion recognition in natural-
istic conditions challenge builds on previous efforts to ad-
vance speech emotion recognition (SER) in real-world scenar-
ios. The focus is on recognizing emotions from spontaneous
speech, moving beyond controlled datasets. It provides a frame-
work for speaker-independent training, development, and eval-
uation, with annotations for both categorical and dimensional
tasks. The challenge attracted 93 research teams, whose mod-
els significantly improved state-of-the-art results over compet-
itive baselines. This paper summarizes the challenge, focus-
ing on the key outcomes. We analyze top-performing meth-
ods, emerging trends, and innovative directions. We highlight
the effectiveness of combining foundational models based on
audio and text to achieve robust SER systems. The competi-
tion website, with leaderboards, baseline code, and instructions,
is available at: https://lab-msp.com/MSP-Podcast_
Competition/IS2025/.

Index Terms: Speech emotion recognition, human-computer
interaction, speech challenge

1. Introduction

Speech emotion recognition (SER) is crucial to enabling tech-
nologies that can interpret and react to human emotions [1-4].
Increasing the robustness of SER systems can facilitate the de-
ployment of real-world SER applications, from mental health
monitoring to human-computer interaction [5, 6]. To drive in-
novation in this field, we organized the speech emotion recogni-
tion in naturalistic conditions challenge as part of Interspeech
2025, building on the success of the Odyssey 2024 SER Chal-
lenge [7]. Unlike traditional datasets derived from acted or
semi-structured scenarios, which often suffer from exaggerated
emotions and limited spontaneity [8,9], this challenge leverages
the MSP-Podcast corpus [10]. This database offers a rich col-
lection of naturalistic, diverse, and well-annotated speech sam-
ples, capturing the subtlety and variability of authentic human
emotions [11]. By focusing on natural emotional recordings,
we aim to address the limitations of conventional datasets and
foster the development of SER systems that perform reliably in
real-world conditions.

The Odyssey 2024 SER Challenge [7] successfully demon-
strated the potential of leveraging naturalistic datasets such as
the MSP-Podcast corpus [10] to advance SER research, with
31 teams contributing with innovative methodologies. How-
ever, several gaps remained, particularly in exploring the inte-
gration of state-of-the-art (SOTA) speech and text-based foun-
dational models, which have recently shown groundbreaking
performance in various domains. For the Interspeech 2025 chal-
lenge, 93 teams participated, reflecting the growing interest in
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SER. The success of this challenge also provided an opportu-
nity to analyze a wider range of techniques, including the im-
pact of recent advances in text-based foundational models and
large language models (LLMs), which have revolutionized var-
ious domains in natural language processing and speech tech-
nology. The challenge established SOTA performance for clas-
sifying emotional categories (task 1; eight class problems for
anger, sadness, happiness, fear, neutral, contempt, disgust, and
surprise) and predicting emotional attributes (task 2; arousal,
valence, and dominance). The diverse range of approaches ex-
plored in this challenge, supported by the availability of an ex-
panded training set from the MSP-Podcast corpus, offers valu-
able guidance on the future directions of SER, illustrating the
techniques that lead to consistent improvements.

After summarizing the challenge’s tasks, this paper dis-
cusses the lessons learned by exploring deeper insights from
the methodologies driving SOTA performance. Our analysis
is based on the information provided by the research teams on
their systems that outperformed our competitive baselines, de-
scribing their approaches, training processes, and the advan-
tages and limitations of their methods. Our analysis revealed
a consistent trend: the complementary nature of speech and
text-based foundational models. A multimodal approach that
combined speech and text was pivotal in achieving the high-
est results. Other successful strategies include innovative fine-
tuning and ensemble techniques, which led to significant per-
formance improvements. These findings highlight the effective-
ness of multimodal frameworks and pave the way for practical
applications with reliable SER systems. This paper presents a
comprehensive analysis of the challenge outcomes, identifying
emerging trends and open questions that will drive continued
progress in the field.

2. Description of the Challenge
2.1. The MSP-Podcast Corpus

The challenge utilizes a subset of release 1.12 of the MSP-
Podcast corpus [10]. This corpus is a rich collection of sponta-
neous emotional speech from diverse podcast recordings. Each
speaking turn is annotated by at least five annotators for cat-
egorical emotions (anger, sadness, happiness, surprise, fear,
disgust, contempt, neutral, and “other”) and the emotional at-
tributes of arousal (calm to active), valence (negative to posi-
tive), and dominance (weak to strong) [12]. The ground truth
labels for categorical emotions are determined through a plural-
ity vote, ensuring that the consensus emotion reflects the most
consistent interpretation. The emotional attributes are rated on
a seven-point Likert scale, with the consensus score being the
average of the annotators’ ratings.

The dataset also includes human-labeled transcripts and
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Figure 1: Distribution of categorical emotions across training
and development sets. A = Anger, C = Contempt, D = Disgust,
F = Fear, H = Happiness, N = Neutral, O = Other, S = Sadness,
U = Surprise, X = No agreement.

force-aligned text-audio mappings to support multimodal ap-
proaches. The dataset is partitioned into speaker-independent
training, development, and test sets to ensure fair evaluation.
For this challenge, the training (2,114 speakers - 84,260 seg-
ments) and development (714 speakers, 31,961 segments) sets
include samples in release 1.12 with speaker information. Fig-
ure 1 presents the distribution of categorical emotions in the
training and development sets, highlighting the dataset’s diver-
sity. Figure 2 shows the distribution of these attributes across
training and development sets, reflecting the natural variabil-
ity in spontaneous speech. The test set corresponds to the test
3 set in the corpus, which contains 3,200 segments (speaking
turns) from 256 speakers. The key difference is that this set
is perfectly balanced across primary categorical emotions (i.e.,
400 sentences for each of the eight emotions, excluding “other
(O)” and the segments with no agreement (X)). This structured
partitioning ensures reliable evaluations, enabling models to be
tested on both categorical and dimensional tasks for emotion
recognition.

2.2. Challenge Tracks

This challenge has two core tracks: (1) categorical emotion
recognition and (2) emotional attribute prediction.

Categorical emotion recognition: This task focuses on classi-
fying speech samples into one of eight distinct emotional cate-
gories: anger, happiness, sadness, fear, surprise, contempt, dis-
gust, and neutral. The performance in this track is evaluated
using the Macro-F1 score, providing a robust measure of classi-
fication accuracy across all categories. As aforementioned, the
evaluation test set is balanced across emotions.

Emotional attributes prediction: This task focuses on predict-
ing a score for emotional attributes, including arousal, valence,
and dominance. These emotional descriptors capture the sub-
tle variations in emotional expression, enabling a more nuanced
understanding of emotional states. Participants are tasked with
predicting these continuous values, with performance evaluated
using the concordance correlation coefficient (CCC) [13] to as-
sess the alignment between predicted and ground truth values.
We sort the results in the challenge by taking the average CCC
for arousal, valence, and dominance.

We only released the speech files of the test set to main-
tain integrity in the challenge, withholding the emotional labels,
transcriptions, and speaker information. The participants were
asked to submit their predictions through a secure evaluation
platform. The results are returned to the teams and automat-
ically uploaded to the leaderboard. The teams were allowed
to submit one prediction per week per task, except for the last
week, where they were allowed two predictions per task.
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Figure 2: Overall emotional attributes distribution for the train-
ing and the development set combined.

3. Baseline

Our baseline model for both tasks follows a similar strategy to
the one used in the Odyssey 2024 SER Challenge [7], but lever-
ages an expanded training set from the MSP-Podcast corpus,
which was provided for this challenge. The model consists of a
fine-tuning module built upon the WavLM-large self-supervised
learning model [14,15], followed by a prediction head compris-
ing attentive statistics pooling [16] and fully connected layers.
The pooling layer assigns adaptive weights to different frames,
computing weighted means and standard deviations, which are
fed into the FC layers for final predictions.

3.1. Implementation Details

The WavLM-large [17] model consists of 24 transformer lay-
ers and approximately 310M parameters. We fine-tune the
model using pre-trained weights from the Hugging Face repos-
itory [18]. The model is trained for 30 epochs with a batch size
of 32, using the Adam optimizer with a learning rate of le-5.

For emotion attribute prediction, separate models are
trained for arousal, valence, and dominance, minimizing the
loss function Loccc =1 — CCC:
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where p1, and 1, represent the means of the actual and predicted
scores, respectively, o, and o, denote their standard deviations,
and p is the Pearson’s correlation coefficient.
For categorical emotion classification, the model is trained
using the cross-entropy (CE) loss:
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where M represents the number of classes, c is the correct label
for observation o, po.. is the predicted probability that obser-
vation o belongs to class ¢, t,,. is 1 when observation o be-
longs to class ¢, and O otherwise, and w. is the weight assigned

Table 1: Baseline performance on categorical emotion recogni-
tion and emotional attributes predictions.

Categorical Emotion Recognition

Model F1-Macro  F1-Micro

Baseline 0.329 0.355

Emotional Attributes Prediction
Model Arousal  Valence Dominance Average
Baseline 0.623 0.638 0.477 0.579




Table 2: Summary of Top-Performing Teams’ Methods and Techniques

Team Name Speech Foundational Models | Other Foundational Models | Losses & Metrics | Class Imbalance | F1 Macro
NTUA [19] WavLM, Whisper, HuBERT RoBERTa, ModernBERT CrossEntropy, F1 Soft Labels 0.4316
SAIL [20] Whisper RoBERTa KLD Loss Data Aug 0.4281
_ | ABHINAYA [21] | WavLM, SALMONN LLaMA-3 Focal Loss Weighted Loss 0.4181
A | Voinosis [22] WavLM, Whisper, HuBERT BERT, T5 CrossEntropy Class Weights 0.4101
5 UNICAMP [23] WavLM, Whisper, HuBERT RoBERTa, DeBERTa Weighted-CE, Rank | Batch Balancing 0.4094
NU [24] Whisper, HuBERT RoBERTa, GPT-4 CrossEntropy Weighted Loss 0.4033
BSC-UPC [25] Wav2Vec2, WavLM, Whisper RoBERTa, DeBERTa F1, Focal Loss Weighted Loss 0.4006
SRPOL [26] ‘WavLM, Whisper RoBERTa Weighted CE Weighted Loss 0.3784
Team Name Speech Foundational Models | Other Foundational Models | Losses & Metrics Multi-Task CCC Avg
SAIL [27] WavLM, Whisper RoBERTa 1-CCC Yes 0.6076
ol SRPOL [26] WavLM, Whisper RoBERTa BSE, MSE Losses Yes 0.6003
é SEU_AIPLab [28] | Wav2Vec2, Whisper, HuBERT - 1-CCC No 0.5955
=1 Voinosis [22] WavLM, Whisper, HIBERT BERT, T5 1-CCC No 0.5928
ABHINAYA [21] | WavLM, SALMONN-13B - 1-CCC No 0.5871

to class c, reflecting its inverse frequency. This weighting ap-
proach helps mitigate class imbalance by giving higher impor-
tance to underrepresented emotion classes.

This baseline serves as a benchmark for evaluating the ef-
fectiveness of different modeling approaches explored by par-
ticipants in the challenge.

3.2. Baseline Results

Table 1 presents the baseline results for both tasks on the test
set. For categorical emotion recognition across eight emotion
classes, the model achieves an F1-micro score of 0.355 and an
F1-macro score of 0.329. For emotional attribute prediction, the
model obtains CCC scores of 0.623 for arousal, 0.638 for va-
lence, and 0.477 for dominance. The average CCC across emo-
tional attributes is 0.579. The lower performance on dominance
prediction likely stems from its distribution (Fig. 2), where ex-
treme dominance values are underrepresented, making it more
challenging for the model to learn robust relevant patterns.

4. Observations and Findings

Ninety-three research teams participated in the challenge, sub-
mitting 166 entries to task 1 (categories) and 111 to task 2 (at-
tributes). Twenty-eight teams submitted classification results
for task 1 that were better than the baseline, whereas ten teams
submitted predictions for task 2 that were better than the cor-
responding baseline. Table 2 lists the top-performing teams.
This section analyzes and discusses the results and information
provided by the teams that outperformed the baselines of the
corresponding tasks and responded to our surveys (17 for task
1, 8 for task 2). Our analysis primarily focuses on the categor-
ical task, given that similar architecture choices were used for
the emotional attribute prediction task with slight variations in
loss functions and training strategies.

Foundational models: Most top-performing teams employed
multimodal frameworks, combining speech and text-based
foundational models [15, 29, 30] (76%). For speech encod-
ing, WavLM [17] (70%) and Whisper [31] (47%) were the
most popular choices, while ROBERTa [32] (53%) and LLaMA
(24%) were frequently used for text-based representations. In
addition to these commonly used models, several teams ex-
plored advanced foundational models such as LLaMA-3 [33]
(24%), GPT-4 [34] (18%), and ModernBERT [35] (5%), un-
derscoring the growing trend of leveraging diverse multimodal
architectures for robust emotion recognition. Other multimodal
approaches demonstrated the growing use of cross-modal atten-
tion mechanisms to better integrate speech and text. The UNI-

CAMP team extended conventional architectures by combining
audio, text, and paralinguistic features through cross-attention
blocks, enabling richer representations. ABHINAYA explored
fine-tuning SALMONN [36] for SER tasks and combined it
with speech-text fusion using LLaMA-3 [33] to boost accuracy.
Use of ensemble: Ensemble learning emerged as a key strategy
for improving generalization (95%). The NTUA team achieved
high performance by employing an ensemble of 14 indepen-
dently trained fusion models. This strategy highlights the ef-
fectiveness of combining multiple foundational models through
deep hierarchical fusion. Similarly, UNICAMP trained a five-
fold stratified RandomForest meta-model on the logits from
multiple architectures for more robust predictions. ABHINAYA
employed a majority voting strategy across five classifiers, en-
suring a balance between stability and accuracy.

Data augmentation: Data augmentation played a significant
role in several top submissions (60%), where several teams em-
ployed techniques such as noise addition and reverberation or
label augmentation using detailed individual annotations. The
SAIL team introduced an augmentation strategy similar to Lot-
fian et al. [37], where two training audios were mixed with par-
tial overlaps, and the resulting label was an average of the two
audio samples.

Training process: The training methodologies adopted by par-
ticipants reflected diverse strategies for optimization and loss
functions. Most teams fine-tuned their speech foundational
models, allowing them to adapt to SER-specific tasks effec-
tively. Weighted cross-entropy loss was the most commonly
used strategy for addressing class imbalance (70%), with fo-
cal loss [38] (18%) employed by some teams to focus on hard-
to-classify samples. For emotional attribute prediction, most
teams used the one-minus concordance correlation coefficient
(1-CCC) loss (87%) to ensure stable and consistent perfor-
mance across arousal, valence, and dominance.

Class imbalance: In addition to loss functions, top-performing
teams use other strategies to deal with class imbalance. The
SAIL team introduced label augmentation by removing a subset
of annotator labels at random and recalculating the label distri-
bution, improving robustness against noisy annotations. Other
teams used batch balancing and inverse frequency weighting to
ensure more equitable learning across emotion classes.
Computational efficiency strategies: Adaptive learning rate
scheduling, such as cosine annealing and exponential decay,
was another common feature among top submissions. The use
of gradient accumulation allowed many teams to train larger
models with limited hardware resources, optimizing their train-
ing processes without compromising performance.
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5. Top Performing Model Evaluations

Figure 3(a) presents the confusion matrix for the top-
performing submission in categorical emotion recognition
(NTUA). Contempt and fear remain the most challenging
classes, being frequently misclassified as anger. Although some
improvement is observed in recognizing fear compared to pre-
vious challenge submissions [7], class imbalance remains a sig-
nificant issue, as these emotions are underrepresented in the
training and development set. Interestingly, among minority
emotions, negative emotions (fear, disgust, and contempt) are
more prone to being misclassified compared to their positive
counterparts (surprise).

Figures 3(b), 3(c) and 3(d) present the confusion matri-
ces for the top-performing submissions for arousal (SAIL), va-
lence (BIIC) and dominance (SAIL), respectively. We cre-
ate the figures by dichotomizing the continuous predicted and
ground truth values into six bins/classes. The confusion ma-
trices for emotional attributes show that predicting extreme at-
tribute scores (e.g., very high or very low values for arousal,
valence, and dominance) is particularly challenging. As il-
lustrated, most samples with extreme attribute values tend to
be predicted toward the neutral bins. This pattern is espe-
cially prominent for low-arousal, low-dominance, and high-
valence samples, highlighting the difficulty of accurately cap-
turing these extremes in naturalistic speech. The results empha-
size the need for models that can better represent and predict
extreme attribute values while maintaining overall stability.

Figure 4 compares the baseline with fusion results of top
submissions for categorical and attribute-based tasks. The
plot includes top1 submissions and ensemble-based approaches
(Top3, Top5, Topl0). Categorical labels are derived using a

plurality vote, and attribute scores are obtained by averaging
predictions across the top submissions. The performance of cat-
egorical emotion recognition and valence prediction shows sig-
nificant improvement through ensemble methods, with valence
reaching a CCC of 0.734 when combining the top five submis-
sions. In contrast, arousal and dominance prediction show min-
imal benefit from ensemble strategies. The primary distinction
between top submissions lies in their use of diverse text-based
foundational models, indicating that valence prediction can be
substantially improved through model diversity. These findings
confirm the critical role of ensemble techniques and multimodal
approaches in achieving state-of-the-art performance in SER.

6. Conclusions

The Interspeech 2025 Challenge highlighted numerous chal-
lenges in advancing SER in naturalistic settings. One of the
most persistent issues across submissions was class imbalance,
particularly in categorical emotion recognition. Emotions such
as contempt and fear remained difficult to classify due to their
limited representation in the training and development sets. De-
spite the use of advanced loss functions such as focal loss and
class-weighted cross-entropy, achieving balanced performance
across all categories remains a challenge. Additionally, predict-
ing extreme values in emotional attributes such as very high
arousal or very low dominance proved difficult, with most mod-
els gravitating toward mid-range values. This observation sug-
gests the need for more robust models that can better handle the
full spectrum of emotional expressions. Several submissions
highlighted the computational challenges of training large mul-
timodal models combining speech and text features. Teams that
integrated multiple self-supervised learning models and text-
based foundational models faced high computational costs and
complex optimization strategies. The trade-off between model
complexity and generalization remains a significant hurdle. An
open challenge is investigating strategies to mitigate gender
bias and variability across speaker demographics, which require
more targeted solutions for equitable SER performance across
all groups.
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