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Abstract
Unsupervised domain adaptation offers significant potential

for cross-lingual speech emotion recognition (SER). Most rele-
vant studies have addressed this problem as a domain mismatch
without considering phonetical emotional differences across
languages. Our study explores universal discrete speech units
obtained with vector quantization of wavLM representations
from emotional speech in English, Taiwanese Mandarin, and
Russian. We estimate cluster-wise distributions of quantized
wavLM frames to quantify phonetic commonalities and differ-
ences across languages, vowels, and emotions. Our findings
indicate that certain emotion-specific phonemes exhibit cross-
linguistic similarities. The distribution of vowels varies with
emotional content. Certain vowels across languages show close
distributional proximity, offering anchor points for cross-lingual
domain adaptation. We also propose and validate a method to
quantify phoneme distribution similarities across languages.
Index Terms: Speech Emotion Recognition, Discrete Speech
Units, Cross-Lingual Emotion Analysis

1. Introduction
Important progress has been made in speech emotion recogni-
tion (SER) over the last years [1–4]. There is a growing need to
develop a generalized SER system capable of handling various
languages and cultural nuances [5]. This task is challenging
due to the complex nature of emotion, cultural differences in
the externalization of emotions, and phonetic variability across
languages. As globalization advances, human-computer inter-
action (HCI) [6] is extending beyond language barriers. Cross-
lingual SER performance, as extensively studied by Feraru et
al. [7], declines sharply when the languages are dissimilar, par-
ticularly if they belong to different language families. There-
fore, it is essential to address the variations in emotional expres-
sion that arise from different linguistic and cultural factors [8] to
enhance the SER generalization capabilities across languages.

Prominent labeled datasets for SER are available in lan-
guages such as English [9, 10], Taiwanese Mandarin [11], and
Russian [12], but most languages still lack reliable resources
for SER. Languages with low resources will require effective
transfer learning strategies. Some adaptation strategies have led
to improvements, such as training models on multiple datasets
to capture diverse data distributions [13, 14] or placing greater
emphasis on selective crucial data points [15]. However, these
supervised approaches often fall short due to the scarcity of la-
beled data and the high costs associated with data annotation.
General unsupervised domain adaptation strategies are effec-
tive. For example, studies have used the ladder network strat-
egy [16–19], which emphasizes reconstruction tasks as auxil-
iary tasks to reduce mismatches between source and target do-

mains, or adversarial domain adaptation [20,21], which focuses
on creating shared discriminative representations where source
and target domains are indistinguishable. However, we hypoth-
esize that cross-lingual emotion recognition strategies should
consider phonetic and linguistic similarities between languages.

Cross-lingual SER faces challenges due to inconsistencies
in prosody, phonetic structure, and syntactic patterns across lan-
guages when expressing emotions. The differences can also in-
clude mismatches in the distribution of emotions [22]. Several
studies have explored linguistic properties. For instance, Pasad
et al. [23] conducted a layer-wise investigation into seman-
tic, syntactic, and morphological properties of self-supervised
learning (SSL) models. Choi et al. [24] suggested that features
extracted from various SSL models exhibit stronger phonetic
alignment than semantic alignment, indicating that features rep-
resenting similar phonemes are closer in the feature space com-
pared to those representing synonymous words. These stud-
ies suggest that phonetic-level variations serve as valuable in-
dicators of linguistic correlations, aiding in designing effective
cross-lingual unsupervised adaptation strategies. For instance,
Upadhyay et al. [25–27] leverage phonetic commonality as an
anchor point in transfer learning to enhance cross-lingual SER.
These studies demonstrates the need to understand and leverage
strategies to compare the acoustic differences across languages.

This study proposes a methodology to compare emotional
differences at the phoneme level across languages. Our strat-
egy calculates acoustic distributions by clustering the wavLM
embedding space generated from a merged set of databases in
English, Taiwanese Mandarin, and Russian. Then, we com-
pare the vowel- and emotion-level distributions, analyzing the
variation of phonemes across emotions and languages. We em-
ployed the Kullback–Leibler (KL) divergence to quantify differ-
ences in phonetic distributions across emotions and languages.
This strategy is ideal for investigating the similarities between
languages in the expression of emotions. Our findings demon-
strate that certain vowels exhibit common distributions across
languages. Furthermore, the cross-lingual distributional gap of
vowels varies depending on the emotion expressed. Addition-
ally, we utilized the Kendall-Tau rank correlation coefficient
to demonstrate the consistency of this quantification strategy.
This study opens research opportunities to design cross-lingual
strategies for SER that are grounded in the phonetical content
of the target languages.

2. Cross-lingual Datasets
We conducted experiments on three datasets with a focus on
English, Taiwanese Mandarin, and Russian. The MSP-Podcast
corpus (v1.11) [9] is an emotional dataset of natural speech in
the wild derived from American English podcasts. The database



Table 1: Set used to create the discrete speech units using bal-
anced contributions of the three speech emotional databases.

Dataset Sentences Frames
MSP-Podcast 10,000 945,383
BIIC-Podcast 10,000 923,265

Dusha 10,000 813,796
Total 30,000 2,682,444

includes 238 hours of emotional speech. The BIIC-Podcast cor-
pus (v1.0) [11] is another in-the-wild emotional dataset sourced
from Taiwanese Mandarin podcasts. The corpus consists of 157
hours of emotional speech. The third database is the Dusha cor-
pus [28]. We used the crowd subset of the Dusha dataset, which
comprises 255 hours of emotional Russian speech recordings.
Unlike the MSP-Podcast and BIIC-Podcast datasets, the Dusha
corpus features acted emotions. These three datasets differ sig-
nificantly in the linguistic structures, including phonetics and
syntax, and the cultural nuances of emotional expression, mak-
ing them an ideal choice for cross-lingual analysis. Since the
Dusha dataset provides categorical emotion labels, experiments
are conducted using four emotion classes: Happiness, Sadness,
Anger, and Neutral state.

Our analysis requires phonetic information. We employed
the Montreal Forced Aligner (MFA) [29] to generate phoneme
boundary alignments for the MSP-Podcast and Dusha datasets.
MFA provides phonetic transcriptions in ARPABET notation,
which we translated into the international phonetic alphabet
(IPA) notation using mappings from Lloyd [30], for the MSP-
Podcast corpus, and Trofimov and Jones [31], for the Dusha cor-
pus. For the BIIC-Podcast, we utilized a forced aligner trained
on the Formosa database [32]. We convert the phonetic tran-
scriptions to IPA notation using the mapping in Liao et al. [32].

3. Methodology
This section outlines our methodology for creating discrete
speech units to analyze phonetic-level differences in the expres-
sion of emotion across languages. It describes the comparative
approach employed to assess the vowel distribution across lan-
guages and evaluate their differences. In this analysis, we focus
on the following subset of vowels represented in IPA notation
for comparison: [a, e, i, o, u, @]. For the emotion-wise analy-
sis, we focused on four specific emotion categories: happiness,
sadness, anger, and neutral state.

3.1. Discrete Speech Units using Vector Quantization

The first step in our approach is to transform continuous speech
SSL frames into discrete speech units. The goal is to establish
a common, unified framework that integrates all the acoustic
and emotional variability observed across the target languages.
Then, we will estimate distributions to quantify the similarities
and differences across phonetic units, emotions and languages.

We rely on wavLM Large SSL [33], although we found
similar observations when the analysis was implemented with
Whisper [34]. We utilized a 1,024-dimensional wavLM rep-
resentation [33], sourced from the HuggingFace library, and
fine-tuned the wavLM Large model specifically for SER as
the downstream task using the MSP-Podcast dataset [9]. The
WavLM frames are estimated at 50 frames per second (i.e.,
20ms per frame) for audio sampled at 16 kHz. To obtain con-
sistency across emotions, we sub-sample all three datasets to

match inter-category distributions by selecting an equal number
of sentences per emotion. Table 1 reports the contribution of
sentences and frames used from each dataset. The unified space
comprises approximately 2.6 million frames.

We obtain discrete speech units using the k-means cluster-
ing algorithm, which is applied to the unified feature space to
partition the acoustic space into a predetermined number of bins
(implemented using 1,024). We fix the centroids and cluster
boundaries obtained from vector quantization, using these dis-
crete speech units consistently in the rest of the analysis.

3.2. Quantifying Acoustic Similarity

Using the phonetic alignment boundaries (Sec. 2), frames con-
taining specific vowels are projected onto this clustered unified
space. The distribution of each vowel is determined by count-
ing the number of frames within each cluster. By using a com-
mon unified space for all distributions, meaningful comparisons
can be made across various phonetic units, languages, and emo-
tions.

We evaluate the similarity between two distributions us-
ing the Kullback-Leibler (KL) divergence, quantifying the sta-
tistical distance between two distributions. Lower KL diver-
gence values indicate greater similarity between the distribu-
tions. Given that the KL divergence is asymmetric, we compute
it in both directions, and the results are subsequently averaged:

d(A,B) =
KL(A,B) +KL(B,A)

2
(1)

where A and B are two distributions.
To validate the KL-divergence values obtained from our

initial bin configuration, we replicated the experiment using
different numbers of bins. Since direct comparisons of KL-
divergence values across different bin sizes may not be mean-
ingful due to scaling differences, we focus on comparing the
relative rankings across different vowels and emotions between
two specific settings. For this purpose, we assess the consis-
tency of the KL-divergence values across these bin configura-
tions by employing the Kendall-Tau (KT) rank correlation co-
efficient, which measures the similarity in the ordering of two
lists. The KT coefficient ranges from -1 to 1, where -1 indicates
a perfect inverse correlation, 0 denotes no correlation, and 1 sig-
nifies a perfect correlation in the order of the ranks. If the rela-
tive trends are preserved with two different settings (i.e., similar
ranking across either vowels or emotions), we can conclude that
our strategy to estimate similarity in the acoustic space is con-
sistent.

4. Emotion-wise Phonetic Analysis
The proposed methodology allows for flexible projection of any
subset of dataset to measure the distribution to assess acoustic
similarity. This section presents a comparative analysis of these
distributions, examining languages, vowels, and emotions.

4.1. Acoustic Analysis for wavLM Discrete Speech Units

Figure 1 illustrates the distribution of the wavLM-based discrete
speech units for each language using 2,000 clusters. In this fig-
ure, the distribution of the entire MSP-Podcast dataset serves
as the reference to facilitate comparisons. The 2,000 bins of
the wavLM space are sorted in descending order based on the
reference frame counts within those clusters. The distribution
of each language is then plotted while maintaining this sorted
order to visualize the differences for Taiwanese Mandarin and



Table 2: KL-divergence values for comparisons between the MSP-Podcast, BIIC-Podcast, and Dusha datasets for 2,000 bins in the
wavLM-based discrete speech unit space. The comparisons consider the corresponding distributions for given phonetical and emotional
classes across two languages. The column ‘all-emo’ and row ‘all-vowels’ gives the results across all emotions and vowels, respectively.

Phonemes
MSP-Podcast vs BIIC-Podcast BIIC-Podcast vs Dusha Dusha vs MSP-Podcast

Happiness Neutral Sadness Anger all-emo Happiness Neutral Sadness Anger all-emo Happiness Neutral Sadness Anger all-emo

a 0.49 0.51 0.64 1.11 0.48 0.66 0.90 1.02 1.47 0.62 0.60 0.95 0.89 1.05 0.45
o 0.71 0.78 0.87 1.31 0.63 1.29 1.55 1.59 1.88 0.91 1.25 1.48 1.62 1.81 0.77
u 3.41 3.77 3.58 2.64 2.04 1.52 1.73 1.89 1.91 0.91 1.55 2.19 1.91 1.71 0.91
i 0.57 0.59 0.61 0.98 0.42 0.60 0.71 0.84 1.09 0.46 0.83 1.12 1.00 1.06 0.63
e 0.77 0.89 0.91 1.43 0.64 1.29 1.54 1.85 2.29 0.93 1.82 2.28 2.65 2.52 1.42
@ 0.42 0.42 0.49 0.84 0.41 0.78 0.84 1.02 1.40 0.57 0.69 0.78 0.84 0.85 0.40

all-vowels 0.22 0.21 0.30 0.57 1.44 0.33 0.39 0.55 0.72 4.01 0.23 0.34 0.39 0.39 2.44

Figure 1: Language-wise distribution of wavLM discrete speech
unit frame assignments in comparison to the distribution as-
signments for the MSP-Podcast corpus.

Figure 2: Vowel-wise distribution across the entire wavLM dis-
crete speech unit space. The three databases are combined for
this graph. The reference is the assignments for all frames.

Russian. Since the MSP-Podcast corpus serves as the reference,
the left plot in Figure 1 shows that the distribution of the MSP-
Podcast corpus precisely fits the orange line, which represents
the reference distribution. The remaining two plots in Figure
1 illustrate that the distributions of the acoustic space for the
BIIC-Podcast and Dusha corpora are markedly different from
the acoustic space in the MSP-Podcast corpus. Clusters densely
populated in the MSP-Podcast corpus frames contain relatively
fewer frames from the other two datasets, indicating significant
linguistic differences among the three languages.

Figure 2 presents the vowel-wise distribution relative to the
entire wavLM feature space (orange line). The distributions
of both vowels and the complete wavLM space are derived by
merging all three datasets. The bins with the highest density
vary for each vowel, indicating that vowels are concentrated
around different areas within the feature space. However, these
vowel clusters are not distinctly separated, suggesting that the

Figure 3: Within corpus analysis of wavLM discrete speech unit
distributions for vowel a. The reference (orange line) is the dis-
tribution for all frames from the corresponding corpus.

Figure 4: Emotional variations in the wavLM discrete speech
unit distributions for vowel a in the MSP-Podcast corpus. The
reference (orange line) is the distribution for vowel a across
emotions. Differently from Figures 1-3, the blue line gives the
bin-wise differences in the distribution of vowel a for each spe-
cific emotion to capture the subtle differences.

vowel centers are dispersed across languages.
As an example, Figure 3 illustrates the distribution of the

vowel a across the three languages. The presence of highly
dense bins that are distantly located indicates that vowel-a is
distinctly clustered and separated across languages. We observe
similar findings for other vowels. This observed disparity in dis-
tributions is pivotal for developing adaptation strategies aimed
at bridging inter-lingual differences.

Figure 4 shows the variation in the distribution of vowel
a within the MSP-Podcast for each emotion, compared to the
overall distribution of vowel a across emotions (orange line).
The orange line converges to zero within 250 bins, indicating
that vowel a is tightly clustered in the wavLM feature space.
The blue line represents the bin-wise differences in the distri-
bution of vowel a for each specific emotion. Emotion-specific
instances of vowel a are clustered in the proximity to each other.
There are some changes, but they are small.

4.2. Distances across Vowels, Emotions and Languages

As outlined in Section 3.2, we employ the KL divergence to
quantify the similarity between distributions. Table 2 reports the
KL divergence values across pairs of languages (MSP-Podcast,



Table 3: Consistency trend analysis for the MSP-Podcast and
BIIC-Podcast comparisons using 500, 2k, and 4K bins (English
versus Taiwanese Mandarin). Left table: KT-coefficients for
vowel trends. Right table: KT-coefficients for emotional trends.

500-2k 2k-4k 4k-500
H 0.81 0.90 0.90
N 0.90 1.00 0.90
S 0.90 0.90 0.81
A 1.00 0.90 0.90
all 0.81 1.00 0.81
avg 0.88 0.94 0.86

500-2k 2k-4k 4k-500
a 0.40 1.00 0.40
o 0.40 1.00 0.40
u 0.80 0.80 0.60
i 1.00 0.80 0.80
e 0.40 1.00 0.40
@ 0.40 0.80 0.60
all 1.00 1.00 1.00
avg 0.63 0.91 0.60

BIIC-Podcast, and Dusha), categorized by vowel and emotion.
The last column, labeled ‘all-emo’, corresponds to the KL di-
vergence values for each vowel, aggregated across all emotions.
Similarly, the last row, labeled ‘all-vowels’, provides the KL di-
vergence values for each emotion, aggregated across all vowels.

The KL divergence values between the MSP-Podcast and
BIIC-Podcast corpora (English versus Taiwanese Mandarin),
presented in Table 2, indicate that vowels i and @ exhibit the
highest similarity across the ‘all-emo’ column. This observa-
tion aligns with the findings of Upadhyay et al. [25], where
phonemes were analyzed within a vowel space defined by the
first two formants. Moreover, vowel i shows the closest similar-
ity between the BIIC-Podcast and Dusha databases (Taiwanese
Mandarin versus Russian), while vowels a and @ are the most
similar between the Dusha and MSP-Podcast corpora (Russian
versus English). These variations highlight inter-lingual differ-
ences, which can be leveraged to learn discriminative features
for cross-lingual adaptation.

Phonetic similarity patterns vary across emotions for dif-
ferent language pairs. In the MSP-Podcast and BIIC-Podcast
pair (English versus Taiwanese Mandarin), happiness and neu-
tral state exhibit the highest similarity for ‘all-vowels’, particu-
larly a and @, while sadness and anger show the greatest simi-
larity for vowels i and @. For the BIIC-Podcast and Dusha pair
(Taiwanese Mandarin versus Russian), vowels a and i are more
similar for happiness, whereas i and @ show higher similarity in
anger and neutral state. For sadness, i is the most similar vowel.
In the Dusha and MSP-Podcast pair (Russian versus English),
vowel a exhibits the highest similarity for happiness, while @
remains the most similar vowel for sadness, anger and neutral.

Overall, the MSP-Podcast and BIIC-Podcast (English ver-
sus Taiwanese Mandarin) pair exhibits greater similarity com-
pared to the other two language pairs, with @ being the most
similar vowel and u the most dissimilar vowel. The phoneme
distribution for neutral state shows the closest alignment. In
contrast, the BIIC-Podcast and Dusha (Taiwanese Mandarin
versus Russian) pair reveals the highest degree of dissimilar-
ity, with i being the most similar vowel and e the most dissim-
ilar vowel. The phoneme distribution for happiness is the most
aligned vowel for these languages.

4.3. Consistency across Different Number of Clusters

To examine the consistency in the trends of the KL divergence
values obtained using 2,000 bins, we replicated the experiment
with 500 and 4,000 bins. We aim to assess how sensitive the re-
sults are to the number of discrete speech units. We evaluate the
consistency of these values across different bin configurations
using the KT rank correlation coefficient.

We report the KT-rank correlation for the results of the
MSP-Podcast and BIIC-Podcast corpora in Table 3, BIIC-
Podcast and Dusha corpora in Table 4, and Dusha and MSP-

Table 4: Consistency trend analysis for the BIIC-Podcast and
Dusha comparisons using 500, 2k, and 4K bins (Taiwanese
Mandarin versus Russian). Left table: KT-coefficients for vowel
trends. Right table: KT-coefficients for emotional trends.

500-2k 2k-4k 4k-500
H 0.90 0.90 0.81
N 1.00 1.00 1.00
S 0.90 1.00 0.90
A 1.00 0.90 0.90
all 0.81 1.00 0.81
avg 0.92 0.96 0.88

500-2k 2k-4k 4k-500
a 0.80 1.00 0.80
o 1.00 1.00 1.00
u 0.80 0.60 0.80
i 1.00 1.00 1.00
e 0.40 1.00 0.40
@ 0.80 1.00 0.80
all 1.00 1.00 1.00
avg 0.83 0.94 0.83

Table 5: Consistency trend analysis for the Dusha and MSP-
Podcast comparisons using 500, 2k, and 4K bins (Russian ver-
sus English). Left table: KT-coefficients for vowel trends. Right
table: KT-coefficients for emotional trends.

500-2k 2k-4k 4k-500
H 0.71 1.00 0.71
N 0.90 1.00 0.90
S 0.90 1.00 0.90
A 0.90 1.00 0.90
all 0.81 0.90 0.90
avg 0.84 0.98 0.86

500-2k 2k-4k 4k-500
a 0.80 0.80 0.60
o 1.00 1.00 1.00
u 1.00 0.80 0.80
i 0.80 1.00 0.80
e 0.80 0.60 0.80
@ 0.80 1.00 0.80
all 1.00 1.00 1.00
avg 0.89 0.89 0.83

Podcast corpora in Table 5. Across all comparisons, the val-
ues demonstrate high KT-coefficient agreement, confirming the
consistency of clustering and KL divergence values across dif-
ferent bin configurations. The Kendall-Tau rank correlation co-
efficients in Tables 3-5 collectively validate the robustness of
the clustering and the reliability of the results obtained with the
KL divergence values.

5. Conclusions
This study conducted a detailed phonetic-level analysis to esti-
mate cross-lingual differences by examining the language-wise
distributions of various datasets and emotion-specific vowels
within a unified SSL feature space. The KL-divergence values,
used to compare vowel distributions across different emotions,
highlighted both the most similar and most distinct vowels be-
tween the three languages studied. Such analysis forms a foun-
dational basis for developing unsupervised adaptation strategies
to bridge cross-lingual variations.

The relevance of this analysis is supported by studies such
as Upadhyay et al. [25] showing that transfer learning leverag-
ing contrastive learning strategies based on phonetic proximity
can improve cross-corpus SER performance. Additionally, re-
search on speech units using discretized SSL features, such as
the one presented in Polyak et al. [35], is closely aligned with
the analysis conducted in this paper, offering potential for inte-
gration to enhance cross-lingual adaptation methods further.

The consistency of the KL-divergence values across vowels
and emotions was further validated by the KT-rank correlation
coefficients, underscoring the robustness of the findings. Fu-
ture work will explore other SSL features, such as Whisper,
which may uncover deeper semantic correlations across lan-
guages. We will also explore unsupervised or semi-supervised
strategies that leverage the findings observed in this study.
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