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Abstract—Emotional annotation of data is important in af-
fective computing for the analysis, recognition, and synthesis
of emotions. As raters perceive emotion, they make relative
comparisons with what they previously experienced, creating
“anchors” that influence the annotations. This unconscious in-
fluence of the emotional content of previous stimuli in the
perception of emotions is referred to as the affective priming effect.
This phenomenon is also expected in annotations conducted
with out-of-order segments, a common approach for annotating
emotional databases. Can the affective priming effect introduce
bias in the labels? If yes, how does this bias affect emotion
recognition systems trained with these labels? This study presents
a detailed analysis of the affective priming effect and its influence
on speech emotion recognition (SER). The analysis shows that
the affective priming effect affects emotional attributes and
categorical emotion annotations. We observe that if annotators
assign an extreme score to previous sentences for an emotional
attribute (valence, arousal, or dominance), they will tend to
annotate the next sentence closer to that extreme. We conduct
SER experiments using the most biased sentences. We observe
that models trained on the biased sentences perform the best and
have the lowest prediction uncertainty.

Index Terms—Affective Computing, Emotional Annotations,
Affective Priming, Emotional Attributes, Speech Emotion Recog-
nition

I. INTRODUCTION

The field of affective computing relies on emotional labels.
These labels are often obtained from perceptual evaluations,
where people give their emotional perceptions after listening
to an audio or watching a video. Emotional perception is
subjective and hard to describe. Therefore, assessing the relia-
bility of emotional labels is important. In affective computing,
reliability is measured by calculating the inter-evaluator agree-
ment between all annotators that evaluated the stimuli [1], [2].
The higher the agreement, the higher the reliability. However,
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this method does not account for any potential issues with
the annotation method itself. A common annotation method
involves a rater sequentially evaluating many samples in a
session, providing absolute categorical or attribute scores [3]–
[6]. A less common method is annotating the samples in an
ordinal manner, where a rater is asked to rank samples on
an emotional scale or compare preferences between samples
with respect to an emotional dimension (e.g., which sample is
happier?). Yannakakis et al. [7], [8] observed that it is easier
for people to record their emotional perception in that way,
suggesting that those ordinal labels can better represent the
person’s perception. The hypothesis is that humans use an
“anchor” when evaluating any emotional content, so when an
explicit “anchor” is provided, a rater can provide more reliable
labels. This hypothesis leads to some important questions
about the sequential method of emotional annotations: do these
annotators “anchor” to the samples previously annotated? Can
we quantify this “anchoring” effect? Does this “anchoring”
effect affect emotional tasks?

The effect of preceding stimuli on the emotional assessment
of a current sample is known as affective priming [9]. In
general, the priming effect refers to the observation that a
prime (i.e., a preceding stimulus) can unconsciously influence
a person’s response to a target/subsequent stimulus, when
there is some form of relationship between the two stimuli.
Priming has been observed in the study of memory, where
it is often demonstrated that target words are recalled faster
when preceded by perceptually or conceptually related primes
[10]. This phenomenon has also been observed in the human
perception of speech. Bosker [11] showed that a target am-
biguous speech segment could be perceived as one of two
words depending on what audio the person was primed with.
Affective priming refers to this priming phenomenon when
the prime and target are related in the emotional space [9].
We focus on answering the following questions:

1) Does the affective priming effect occur in emotional
attribute labeling of speech?

2) Is the affective priming effect observed in categorical
labels?

3) Does the affective priming effect impact speech emotion
recognition (SER) performance?

We analyze the affective priming effect on ratings of
emotional attributes and emotional categories. For emotional
attributes, we consider arousal (calm versus active), valence
(negative versus positive), and dominance (weak versus strong)
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[12]–[14]. For emotional categories, we consider the emotional
classes of happiness, anger, sadness, and neutral state. Our
study utilizes two publicly available databases to explore this
effect: the MSP-Podcast corpus [5] and the BIIC-Podcast
corpus [15]. The MSP-Podcast corpus contains 890,851 an-
notations of English sentences collected over 71,696 sessions
(release 1.11). The large size of this corpus provides a multi-
tude of examples to investigate the affective priming effect.
The BIIC-Podcast corpus contains 147,949 annotations of
sentences in Mandarin collected over 898 sessions (release
1.00). Although this database is smaller than the MSP-Podcast
corpus, it allows us to validate the observed effects of affective
priming in a different setting. For both databases, our approach
involves comparing the label provided by an evaluator for
a sentence to the average label of the other annotators who
rated that sentence. We denote this average as the expected
label. We then take the difference between the evaluator label
and the expected label and condition it on the emotional
scores of the previous sentences rated by the current evaluator.
In our preliminary work [16], we explored how affective
priming affects emotional annotations of speech during out-
of-context sequential evaluations (i.e., annotators listen to un-
related emotional speech before rating new speech). This paper
corroborates and extends our study on the affective priming
effect by considering multiple databases, adding emotional
categories in the analysis, and quantifying uncertainty to better
understand the results.

Our analyses show that the affective priming effect is indeed
observed in our databases’ attribute annotations (Q1). When
an annotator rates a sentence in one extreme of an emotional
attribute, they will rate the next sentence closer to that extreme
when compared to the expected label. Similarly, when an
annotator rates a sentence with an emotional class, they are
more likely to rate the next sentence with the same emotional
class than the expected class obtained from other annotators
(Q2). We observe that when annotators are primed with neutral
sentences, i.e., they rated preceding sentences with neutral
values for the emotional attributes, their attribute ratings are
closer to the expected label (Q1). We see that affective priming
results in a bias in the labels that is higher when the primes
are more extreme, e.g., more extreme attribute scores or
a consistent emotional class (Q1 and Q2). Therefore, we
estimate the affective priming bias expected for each sentence
in our dataset by looking at the emotional priming the raters for
each sentence experienced during the annotation process. We
then separate the sentences into groups with different levels of
affective priming bias and perform SER modeling experiments
on the groups (Q3). We see that models trained on labels
affected by the affective priming effect perform best. These
models also have lower variance in their performance metrics,
suggesting a lower uncertainty at testing time. To further
analyze model uncertainty, we use Monte Carlo Dropout to
test the models. These uncertainty analyses support the idea
that our performance results are due to the low uncertainty of
the model when predicting labels affected by affective priming.
We further analyze the performance of our models for different
label values, showing that the higher performance of models
trained with labels affected by affective priming is due to

performance differences for extreme emotional labels.

II. RELATED WORK

A. Contextual Influence In The Perception of Emotions

The idea that surrounding speech affects the perception or
annotation of emotional speech has been explored in previous
work. Cauldwell [17] observed that in some instances, a
sentence was rated as angry in isolation but not angry when the
sentence was heard within the full conversation. Jaiswal et al.
[18] explored the differences between emotional annotations
of sentences conducted when the sentences were in random
order (out-of-context) and in the order they were spoken (in-
context). They observed that in-context annotations were more
similar to the self-reported emotions of the speakers. However,
the out-of-context annotations were more easily predicted by a
SER model. Overall, these studies demonstrate that including
contextual information during the annotation process changes
the emotional ratings enough to have an effect on SER
results. However, our analysis in this paper does not focus
on context. The databases we analyze give random “context”
to the annotators, meaning when they rate a sentence, the next
and previous sentences are probably unrelated to the current
one. Can the presence and the emotional content of out-of-
context sentences also affect annotations?

In the field of preference learning, the comparison of
consecutive samples is often used to create ordinal labels [8].
These ordinal labels contain information about how the emo-
tional value of one sentence compares to another. Therefore,
they can be obtained when sentences are directly compared,
creating explicit “anchors.” In the field, there is an expectation
that when annotators rate a sentence after another sentence,
they will use the previous sentence to anchor their emotional
rating [8]. Anchoring is a phenomenon where people are
likely to give relative rather than absolute value judgments in
uncertain situations [19], where these relative judgments are
anchored to some stimuli with a given value. Considering the
subjective and uncertain process of rating emotion, annotators
are likely to anchor their value judgments to some previous
stimuli to which they have already given a value. When we
rely on common annotations collected in sequence during a
session, the “anchors” are not explicit, leading to important
questions on the validity of the labels.

Affective priming is a phenomenon where the emotional
perception of a sample (audio, video, word) is affected by the
emotional content of a previous stimulus [9], [20]. Studies
on this phenomenon have found that priming with a clear
emotional stimulus will push a person’s valence perception
of an ambiguous sample towards the valence value of the
stimulus [9], [21], [22]. This effect has been studied mostly in
emotional ratings of words [20] and images [21], [23]. Studies
have mostly focused on the emotional attribute of valence. If
the emotional priming effect occurs in the emotional anno-
tations of speech, then the “anchors” that annotators use to
rate sentences are also priming stimuli. Therefore, we expect
that these anchors are not only used as a starting point for
the emotional rating of the target sentences, but also alter the
actual emotional perception of those sentences. In this paper,
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we focus on exploring if the affective priming effect exists
in the speech domain for the emotional attributes of arousal,
valence, and dominance and emotional categories. We further
evaluate how the resulting bias affects SER models by con-
ducting various modeling experiments using annotations with
large biases towards an emotional extreme or an emotional
category.

B. Relation to Previous Work

This study is an extension of our preliminary work ana-
lyzing the affective priming effect [16]. Our previous paper
showed that there was an affective priming effect on the
emotional attribute annotations, conducting the evaluation on
the MSP-Podcast corpus. This paper explores the same effect
on a newer version of the corpus as well as on a different
corpus, the BIIC-Podcast corpus. We show that the previously
observed effect is consistently seen in both corpora. Further-
more, this paper also explores the affective priming effect
on categorical labels in both corpora. In our previous work,
we also conducted attribute-based SER modeling experiments
on subsets of the MSP-Podcast corpus affected by affective
priming. We conduct the experiments again using a larger
amount of data to validate our previous findings. We also
extend our modeling experiments to the prediction of the
emotional category of each sentence. Finally, we aim to further
explain our previous and current SER modeling results by
studying the uncertainty of our SER models.

III. RESOURCES

A. The MSP-Podcast Corpus, Version 1.11

The MSP-Podcast database [5] is a collection of emotionally
diverse audio files sourced from audio and video sharing
websites. This dataset is part of an ongoing project. In this
study, we utilize version 1.11. The dataset contains 151,654
short audio files, each lasting between 3 to 11 seconds, and
totals almost 238 hours. Every audio file in the dataset has
been annotated by at least five annotators for both categor-
ical emotions (e.g., anger, sadness, happiness, surprise, fear,
disgust, contempt, and neutral state) and emotional attributes
(e.g., valence, arousal, and dominance), using a 7-point Likert
scale. Arousal ranges from calm to active, valence from
negative to positive, and dominance from weak to strong. The
MSP-Podcast corpus contains annotations partially completed
by Amazon Mechanical Turk workers and UTD students.
For both cases, we used an annotation website developed
by our laboratory. During the annotation process, annotators
work through a sequence of audio files during a session. An
important aspect of this process is that the samples in the
sequence and the order of the sequence each annotator rates
are randomly chosen from a pool of audio files. Therefore,
it is highly unlikely that the annotators were exposed to the
same preceding samples when annotating a specific sample.
For our experiments, we relied on the predefined splits in the
dataset, which include training and development sets, as well
as three distinct test sets. This study only utilizes Test 1.

a b c d ge f

Session

Sentence

Valence 
Ra�ng 3 5 2 1 21 2

Rater 0144

2 min window

Low Prime Window

Fig. 1. Selection of prime window for the valence annotation of sentence “g”
by rater 0144. The prime window of an annotation contains the annotations
completed in the 2 minutes preceding the current annotation. In this example,
the prime window is considered low since it only contains valence annotations
with values of 1 and 2.

B. The BIIC-Podcast Corpus, Version 1.00

The BIIC-Podcast database [15] is a speech corpus for
SER research in Taiwanese Mandarin, which mirrors the data
collection techniques employed by the MSP-Podcast corpus.
It is compiled from a variety of audio-sharing platforms,
encompassing 157 hours of podcast speech samples. This
corpus leverages the capabilities of Label Studio [24] to collect
emotional annotations. During the annotation phase, anno-
tators assess the emotional content of speech utterances by
assigning attributes related to arousal, valence, and dominance.
These attributes are evaluated using a 7-point Likert scale.
Within this collection, Label Studio also logs the time spent
on each annotation task, which aids our research objectives.
The number of emotional annotations ranges from 3-7 per
sample. In this study, we rely on release 1.00 of the BIIC-
Podcast corpus, which contains 46,204 sentences (96 hours
and 58 mins).

C. Data Preparation

The datasets explained above are designed for SER tasks
[25]–[28]. Therefore, the data is structured so that the in-
formation about a particular sentence is easy to access. For
this paper, we need information about each target annotation,
including samples that were previously annotated. Therefore,
the analysis in this paper considers the order in which each
rater annotated the samples. First, we define the concept of an
annotation session, which corresponds to all the annotations by
one evaluator during an uninterrupted period of time. We order
the annotations by the date and time they were conducted.
Next, we define the session by looking at the time difference
between annotations. We consider that a session ended if the
given rater did not complete any new annotation in the next
15 minutes. The next annotation by this rater will mark the
beginning of the next session.

Next, we define a prime window for each target rating in
a session. We first assume that annotations closer in time are
more likely to result in a priming effect. In the MSP-Podcast
dataset, annotators in general take at most 1 minute to rate
one sentence. Therefore, we only consider ratings done in the
previous two minutes of a target sentence as possible primes.
We refer to this two-minute segment as the prime window.
Fig. 1 shows the process of selecting the prime window. The
figure shows the prime window for the target valence rating
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of sentence “g” by rater with ID 0144. In this case, the prime
window for sentence “g” is {2, 1, 1, 2}. The prime window
can contain any number of annotations, including zero. For
the first two analyses in Section IV, we only consider target
annotations with at least three ratings in their prime window.

IV. AFFECTIVE PRIMING EFFECT ANALYSES

In this section, we conduct analyses to explore if the
affective priming effect occurs in sentence-level emotional
annotations. We compare ratings of arousal, valence, and
dominance and categorical emotional ratings under different
priming conditions. We explore whether the affective priming
effect occurs in the emotional labeling of speech and strategies
to quantify its impact on emotional attributes and categorical
labels.

A. Low, Neutral, and High Attribute Priming

We want to explore if an affective priming effect exists in
our annotations. We first define three types of prime windows
for each emotional attribute: low, neutral, and high. A low
prime window only contains attribute ratings of 1 and 2,
i.e., calm for arousal, negative for valence, and weak for
dominance. A neutral prime window only contains ratings
of 3, 4, and 5. A high prime window only contains ratings
of 6 and 7, i.e., active for arousal, positive for valence,
and strong for dominance. In this section, we look at all
target annotations with three or more ratings in their prime
window, which is around 33.8% of the annotations in the MSP-
Podcast corpus. Notice that we use a large corpora with several
annotation sessions (we consider 71,696 sessions for the MSP-
Podcast corpus and 898 sessions for the BIIC-Podcast corpus).
While most cases do not qualify for low, neutral, and high
prime windows, we still obtain enough examples for each
condition. Out of the target annotations in the MSP-Podcast
with three or more ratings in their prime window, 22.4% of
arousal annotations, 26.1% of valence annotations, and 25.3%
of dominance annotations demonstrate one form of prime
window (low, neutral, or high). Table I shows the number of
samples for each of these prime windows.

Next, we define the attribute difference. We want to compare
annotations under a priming effect with annotations under
no effect, i.e., expected annotations. We aim to measure
the difference to quantify the affective priming effect. We
assume that when all ratings of a sentence are averaged, any
priming effect is mitigated. Therefore, we define the expected
annotation of a target annotation as the average of all the
ratings for the target sentence, excluding our target rating.
Then, the attribute difference is the difference between the
target rating and the expected annotation attribute value. Fig.
2 shows this process for the target valence rating of sentence
“g” by rater 0144. In the example, the average score provided
by the other four evaluators is 5.0. The score provided by rater
0144 is 2.0. Therefore, the difference is -3.0.

We calculated the attribute difference for each annotation
in each prime window group. Then, we averaged the attribute
differences in each priming group (i.e., low, neutral, and high).
Fig. 3 reports the resulting average attribute differences for

Sentence g

ValenceAnnotator

2Rater 0144

5Rater 1034

6Rater 0456

4Rater 1321

5Rater 0334

Target Ra�ng

“Expected Ra�ng”

Valence 
Difference

Fig. 2. Example of the calculation of the attribute difference of an annotation.
The valence difference of the annotation of sentence “g” by rater 0144 is the
difference between the valence target rating by rater 0144 and the valence
expected rating, which is the average of the other valence annotations of
sentence “g.”
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Fig. 3. Average attribute differences between target and expected annotations.
The error bars show the standard deviation of the attribute differences for each
type of priming.

the MSP-Podcast and BIIC-Podcast datasets. When annotators
rate previous sentences with high attribute values, they will
likely rate the current sentence with a higher score than the
expected ranking. Similarly, when annotators rate previous
sentences with low attribute values, they will likely rate
the current sentence with a lower score than the expected
ranking. Interestingly, when the previous sentences are rated
with neutral scores, there is a minimal difference between
the current rating and the expected ranking. To evaluate if
the differences between the results of the priming groups
are significant, we conducted t-tests (p-value < 0.05) be-
tween the attribute differences of each priming group within
each attribute (all pairwise comparisons). These tests showed
statistically significant differences between all groups tested.
These results clearly show that we do have a priming effect
in the attribute annotations. The results for the two datasets
are similar, showing that the affective priming effect occurs in
different environments and languages. However, the effects on
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arousal and dominance are more extreme in the BIIC-Podcast
corpus, while the effects on valence are more extreme in the
MSP-Podcast corpus. The affective priming effect is similar
between attributes, which coincides with previous affective
priming results for the attribute of valence [9]. In general,
the affective priming effect affects dominance the most and
valence the least. We also conducted these experiments while
varying the priming window length to 1, 1.5, 2, 2.5, and 3
minutes. We observed that all priming window lengths we
tried showed a similar affective priming effect (Section I of
supplemental materials).

In previous affective priming work, the target content also
had an influence on the priming effect [9]. To explore how
the content of our target sentences affects priming, we further
group our target annotations into content bins according to
their expected annotations. For example, the target annotation
in Fig. 2 has an expected valence rating of 5.0, so it is placed
in the “[5,6)” valence label bin. We conduct the same attribute
difference experiments on these smaller groups, reporting the
results on low, neutral, and high prime windows. Table I shows
the number of examples considered in each case. Figs. 4 and
5 show the results for the MSP-Podcast corpus and BIIC-
Podcast corpus, respectively. The trends are similar between
the datasets, with the differences coming from the language
or dataset size differences. We generally see larger attribute
differences when the priming and content types are further
apart. These results imply that when the prime window values
are similar to the emotional content of the sentence (e.g., the
prime window has positive ratings, and the sentence is also
positive), there is a smaller priming effect. For the extreme
bins, the affective priming effect is bounded by the range of
the annotations (1 to 7). The priming effect pushes annotations
to extremes, but if the average annotation is at a limit, the
annotator cannot give a more extreme value, even if they
perceive a more extreme emotion than the expected ranking.

We also examine the affective priming effect on individual
annotators. We conduct similar experiments to those above
to determine whether the affective priming effect varies de-
pending on the reliability of the raters. We only conduct
this analysis on the annotations of the MSP-Podcast corpus
since we have 14,363 annotators in release 1.11. We focus on
low and high prime windows, considering annotators with at
least five annotations included in the specific prime window.
We consider 177 raters with this criterion. We estimate their
reliability by considering all of their annotations in the MSP-
Podcast corpus. We use the Krippendorff’s Alpha coefficient
[1] as the agreement metric. Annotators with average agree-
ments below 0.2 are clustered in the poor reliability group
(orange bars in Fig. 6). Otherwise, they are clustered in the
higher reliability group (blue bars in Fig. 6).

We first group annotations by annotator. Then, we group
annotations by prime window type. Then, we take the attribute
difference from the expected scores for each sentence in each
group, estimating the average of those differences. Fig. 6
shows the histogram of these average attribute differences for
each annotator and priming type. The figure shows that most
annotators have similar average attribute differences when
primed similarly. These results show that for high attribute
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Fig. 4. Average attribute differences between target and expected annotations
of the MSP-Podcast corpus. Before averaging, the attribute differences are
binned according to their expected annotations.

priming, annotators in the poor reliability group have similar
priming effects as the annotators in the higher reliability group.
For the low attribute priming, the annotators in the poor
reliability group have values further from zero, which suggests
that they are more affected by the affective priming. However,
there is a low amount of data available for the low priming
cases, especially for dominance, which makes it hard to draw
concrete conclusions from the graphs. We also conducted
these experiments using two additional agreement thresholds,
0.4 and 0.6, where we observe similar trends (Section II in
supplemental materials).

B. Emotional Category Priming

In the previous section, we showed that the affective priming
effect occurs in our attribute annotations, but, does this effect
occur in emotional category annotations? Since these annota-
tions consist of emotional categories instead of a continuous
value, as with the emotional attributes, defining priming types
is different. In this section, we group annotations by the
singular category in their prime window. For example, if a
target label only has the label “Happy” in their prime window,
the sample is placed in the happy priming group. If the
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Fig. 5. Average attribute differences between target and expected annotations
of the BIIC-Podcast corpus. Before averaging, the attribute differences are
binned according to their expected annotations.

prime window contains less than three annotations or a mix
of categories, the target annotation is not considered in this
analysis.

Since we cannot easily measure a meaningful difference
between categories, we compare the frequency or coverage
of an emotional category in the labels. We first plot the
coverage of each emotional category in our target labels for
each priming type, shown in blue in Fig. 8. For example, 80%
of the target labels are “Happy” in the MSP-Podcast happy
priming group, while less than 10% are “Angry.” Next, we
plot the coverage in our expected labels. The expected labels
are the emotional categories for the sentence, excluding the
target label. Fig. 7 shows an example for sentence “g.” This
sentence has the following emotional category annotations:
{Surprise, Happy, Happy, Neutral, Happy} and the target rater
0144 labeled it as “Surprise.” The expected label for the target
annotation will include the classes {Happy, Happy, Neutral,
Happy}. We repeat this process for all the sentences primed
by the target emotional class. Then, we estimate the histogram
considering all the expected labels provided to the sentences
(see Fig. 7). The coverage of the expected labels is shown
in orange in Fig. 8. The results are similar between the two

TABLE I
NUMBER OF TARGET ANNOTATIONS IN EACH AFFECTIVE PRIMING GROUP

AND EACH SENTENCE ATTRIBUTE LABEL BIN.

MSP-Podcast Corpus
Affective Expected Annotation Bins
Priming [1,2) [2,3) [3,4) [4,5) [5,6) [6,7] Total

A
ro

Low 13 153 323 323 161 33 1,006
Neutral 167 2,920 10,378 21,258 14,297 1,626 50,646
High 7 96 472 1,224 3,340 465 5,604

Va
l Low 13 132 214 164 79 14 616

Neutral 559 6,447 18,505 25,327 11,004 898 62,740
High 9 71 293 913 2,056 150 3,492

D
om

Low 29 73 61 102 35 4 304
Neutral 53 1,388 9,955 29,336 17,337 1,227 59,296
High 3 26 256 1,208 3,553 229 5,275

BIIC-Podcast Corpus
Affective Expected Annotation Bins
Priming [1,2) [2,3) [3,4) [4,5) [5,6) [6,7] Total

A
ro

Low 5 241 354 407 231 24 1,262
Neutral 72 1,408 4,360 5,267 2,448 312 13,867
High 0 20 50 85 102 36 293

Va
l Low 0 6 51 25 1 0 83

Neutral 61 1,614 11,228 9,346 1,508 31 23,788
High 0 1 13 14 10 0 38

D
om

Low 26 143 353 633 419 41 1,615
Neutral 56 627 2,942 5,473 3,972 580 13,650
High 4 126 615 1,297 1,047 180 3,269

datasets. Overall, if an annotation is primed with an emotional
category, it is more likely to be labeled as that category.
These results clearly show that the affective priming effect
also occurs in emotional category annotations.

C. Priming Patterns

In the previous two sections, we explored the affective
priming effect in general priming groups (e.g., high versus
low for emotional attributes; happy, sad, angry, and neutral
for categorical classes). However, there are many annotations
in our datasets that do not have such a clear priming. An
evaluator might see a very sad sentence, then a very excited
one, then the target sentence, with no clear type of priming. In
this section, we define a priming pattern for each annotation
in our dataset.

The priming pattern of a target annotation is defined as
the ratings or categorical labels of the most recent three or
less annotations in its prime window. We choose the closest
three or less annotations to ensure we keep as much priming
information while still having enough target annotations in
each priming pattern to analyze them. If we were to increase
the maximum number of annotations in each priming pattern,
we would have many patterns with almost no target ratings.
This section reports the results on the MSP-Podcast corpus.
The results for the BIIC-Podcast are described in the sup-
plemental material. For example, the pattern “6 7 5” for a
given emotional attribute indicates that the last sentence to
be annotated before the target sentence was labeled with a
score of “5”. The other two previous sentences were labeled
with “7” and “6”, respectively. Similarly, the pattern “N N
H” for an emotional category annotation indicates that the last
sentence to be annotated before the target sentence was labeled
as Happy, and the other two previous sentences as Neutral.
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Fig. 6. Histograms of the average attribute differences between target and expected annotations of the MSP-Podcast corpus done by individual annotators.
Annotators with low inter-evaluator agreements are highlighted in orange and with higher inter-evaluator agreements are highlighted in blue.
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Fig. 7. Example of the process to obtain the vectors for the target/primed
annotations and expected annotations using emotional categories. The categor-
ical label of rater 0144 for sentence “g” is Surprise. Therefore, the one-hot
vector for the primed annotation data has only a “1” for surprise and “0” for
the other emotions. The vector for the expected annotations includes three
selections for Happy (0.75) and one for Neutral (0.25).

We start the analysis with emotional attributes. We conduct
experiments similar to the ones reported in Section IV-A.
Figs. 9a (arousal), 9b (valence), and 9c (dominance) show the
average attribute differences for target annotations for some of
the priming patterns. We observe similar results to our previous
analyses, where “stronger” priming, i.e., priming with more
extreme and consistent values, results in a more pronounced
affective priming effect. For example, in Fig. 9a, the absolute
arousal differences are higher for the priming patterns of “7 7
7” and “1 1 1” than for the priming patterns of “7 1 1,” “1 7 7,”
and “4 4 4.” In Fig. 9a, 9b, and 9c, the plotted red line shows
the average attribute difference when there were no annotations
in the priming window, e.g., at the beginning of a session,
which is close to 0. We conduct similar experiments on the
BIIC-Podcast corpus (Section III of supplemental materials),

which show similar trends on the average attribute difference
results.

We also analyze the patterns for categorical classes. The key
requirement for this analysis is to define a strategy to quantify
the affective priming effect. Emotional attributes have con-
tinuous values, so we can estimate the difference between the
target score and the expected label. This is not straightforward
for categorical classes. Instead, we transform the target and
expected categorical labels into vectors. Then, we estimate the
cosine distance between them. The label vectors for each target
and expected categorical label are created by only considering
the following categories: “Neutral” (N), “Happiness” (H),
“Anger” (A), and “Sadness” (S). The rest of the emotional
categories are added to the class “Other” (Oth).

The five-dimensional vector for the target category label is
a one-hot vector with a single “1” in the location represent-
ing the emotional label [N,H,A,S,Oth]. The five-dimensional
vector for the expected category label is created by estimating
the proportion of labels assigned by other raters to the target
sample. Fig. 10 shows this process for sentence “g” by rater
0144. The cosine distance function d is defined as:

d(xr, x̄) = 1− xr · x̄
∥xr∥2 ∥x̄∥2

,

where xr is the target label vector of rater r and x̄ is its
expected label vector. We utilize the cosine distance as it is a
standard method of quantifying the difference between vectors.
The cosine distance has a minimum value of 0 when the
vectors are pointed in the same direction and a maximum value
of 2 when the vectors are pointed in opposite directions. In our
case, the sum of the vector components are all 1. Therefore, the
two vectors are the same if the distance is 0. All components
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Fig. 8. Frequency of categories in the primed (target) annotations and the expected annotations of the emotional category of the sentences in the MSP-Podcast
and BIIC-Podcast corpora.

also have values of 0 or more, which means our distance metric
has a maximum value of 1.

Fig. 9d shows the average categorical differences for target
annotations with a selection of priming patterns. Similarly to
the attribute results, patterns with a clear emotion differ more
than patterns with just neutral labels. However, unlike the
attribute results, mixed emotions in priming do not lead to a
lower difference. If the emotions are mixed with neutral, such
as the priming patterns of “N N H” and “N N S,” the difference
does decrease. However, if the emotions are mixed with other
emotions, such as “S S H” and “H S S,” the difference can
be higher. For emotional category priming, priming with any
mixture of emotions leads to a more pronounced affective
priming effect than neutral priming. Fig. 9d also shows the
average categorical difference when there were no annotations
in the priming window using a solid red horizontal line. Its
value is around 0.3. This is the minimum categorical difference
of all the priming patterns. Therefore, the average cosine
distance for priming should be compared to this minimum
instead of zero.

D. Creating an Expected Bias Measure

In the previous section, we observed that we could obtain
measurements on how much affective priming affects each
type of priming in the corpora. In this section, we use the
average attribute and categorical differences for each priming
pattern as the expected bias for each pattern. This expected
bias can then be assigned to each annotation in the corpus
with the same priming pattern seen during the annotation
process (e.g., look-at-table approach). Then, we can average
the expected biases of the annotations for every sentence in
the corpus, which we call the expected affective priming bias
of each sentence. Fig. 11 shows the process of calculating the

expected affective priming bias of the valence label of sentence
“g.” For example, the pattern “1 1 2” has an expected bias of
-0.687 for the attribute of valence. The valence annotation of
sentence “g” by rater 0144 is preceded by the same pattern of
valence annotations. Therefore, it has the same expected bias.
We follow the same process for the rest of the annotations of
sentence “g.” Then, we average those expected biases to get
the overall expected affective priming bias of sentence “g.”
The actual annotations of the sentence do not play a role in
the expected bias calculation. This expected bias gives us an
idea about how much the affective priming effect has affected
the labels in a corpus.

After calculating the expected affective priming bias for
each sentence in the corpus, we plot histograms of the biases
of the attribute and emotional categories for the full MSP-
Podcast corpus. Fig. 12 shows all the histograms of the
MSP-Podcast corpus. For the attribute labels, Figs. 12a- 12c
show that the affective priming biases are concentrated in
the center around a bias of 0, where we see large peaks.
These peaks contain sentences with either annotations with no
prime window (e.g., all annotations done at the beginning of
sessions) or annotations whose prime windows gave opposite
effects (e.g., a sentence where half of its annotations were
primed with “7 7 7” and the other half with “1 1 1”). We
also calculate and plot the affective priming biases of the
BIIC-Podcast corpus (Section IV of supplemental materials).
The BIIC-Podcast histograms show that the attribute priming
biases are also concentrated near zero. For the category labels,
Fig. 12d shows that the affective priming biases have two
peaks. The first peak is at the average categorical difference of
the annotations with no annotations in their priming window
(e.g., all annotations were done at the beginning of sessions).
The second peak is around a bias of 0.425. This peak has
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Fig. 9. Average attribute differences between target and expected annotations
of the MSP-Podcast corpus. Before averaging, the attribute differences are
grouped according to the priming patterns of their target annotations.

sentence annotations with a mixture of emotional and neutral
annotations in their prime window. In the next section, we
utilize the histograms to split the corpus into subsets that are
expected to be more or less affected by the affective priming.

V. MODELING EXPERIMENTS

This section explores the affective priming effect on SER
modeling. We aim to assess whether the affective priming
effect impacts SER performance. The experiments in this
section are conducted on the MSP-Podcast corpus, since it
is the larger corpus.

Sentence g

Emo�onal CategoryAnnotator

SurpriseRater 0144

HappyRater 1034

HappyRater 0456

NeutralRater 1321

HappyRater 0334

Target Label Vector

“Expected Label Vector” 

Categorical Difference

Category Label Vector: 

Fig. 10. Example of the calculation of the categorical difference of an
annotation. The categorical difference of the annotation of sentence “g” by
rater 0144 is the distance between the target label vector, created by the labeled
category from annotator 0144, and the expected label vector, created by the
other annotations of sentence “g.”

Expected BiasSentence gPriming Pa�ernAnnotator

-0.6872211Rater 0144

-0.0035Rater 1034

0.103664Rater 0456

-0.14543Rater 1321

-0.0405771Rater 0334

Sentence-level expected 
affec�ve priming bias

Fig. 11. Example of the calculation of the expected affective priming bias
of a sentence. The expected bias of the valence label of sentence “g” is the
average of the expected biases of each valence annotation of the sentence. The
expected affective priming bias of each annotation is based on the priming
pattern seen by the rater preceding the current annotation.

A. Creating Biased Data Subsets

In Section IV-D, we defined affective priming biases for
the sentences in the MSP-Podcast corpus. Our goal in this
section is to use those biases to create biased and unbiased
subsets of the MSP-Podcast corpus to ultimately explore how
the affective priming effect affects SER modeling. First, we
sort all the sentences according to their biases. We have four
independent affective priming bias lists for each sentence, one
for each of the three attributes and one for the emotional
categories.

The subsets for the emotional attributes are as follows. We
create four subsets for each emotional attribute: the Neg and
Pos subsets are the sets of sentences with the bottom 20% and
top 20% of affective priming biases, respectively. We call these
the biased subsets. The Neut1 subset is the set of sentences
whose bias is between the 40% and 60% quantiles, and the
Neut2 subset has sentences in which the bias is between -0.02
and 0.02. These are two different ways to define sentences with
low affective priming biases, one by choosing the sentences
with middle bias values (Neut1) and the other by choosing
sentences with bias values around zero (Neut2). We call these
sets the unbiased subsets. The subsets are visualized in Fig.
12a, 12b and 12c. The Neg subset is shown in blue, the Pos
subset is shown in orange, and the Neut1 subset is shown
in black. We do not show the Neut2 subset since it mostly
overlaps with the Neut1 subset. Table II shows the number of
sentences in each partition of each attribute subset.

The subsets for the emotional categorical labels are as
follows. Since the emotional category affective priming bias
does not have negative values, we define different subsets:
the Neut1 and High subsets are the sets of sentences with
the bottom 20% and top 20% of affective priming biases,
respectively. The Mid subset is the set of sentences whose
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(c) Dominance
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(d) Emotional Categories

Fig. 12. Histograms of the expected affective priming biases (MSP-Podcast corpus). The sentences are split according to their bias values. In Fig. 12a, 12b,
and 12c, the sentences with the bottom 20% of the bias values are shown in blue, the top 20% are shown in orange, and the 20% centered around the median
are shown in black. In Fig. 12d, the sentences with the bottom 20% of bias values are also shown in blue, the top 20% are shown in black, and the 20%
centered around the median are shown in orange. The rest of the sentences are shown in grey. Most sentences have low expected affective priming bias.

TABLE II
NUMBER OF SENTENCES IN EACH ATTRIBUTE SUBSET FOR THE

MSP-PODCAST CORPUS.

Corpus Subset Emotional Attribute
Subset Partition Arousal Valence Dominance

Neg
Train 18,402 17,260 18,019
Dev 3,438 4,346 3,443
Test 5,106 6,216 5,577

Pos
Train 16,612 17,318 16,778
Dev 3,593 2,921 3,555
Test 6,331 5,335 6,123

Neut1
Train 15,139 15,232 15,331
Dev 5,285 5,151 5,200
Test 6,389 6,371 6,296

Neut2
Train 13,049 16,875 14,531
Dev 4,786 5,465 5,047
Test 5,619 6,958 6,053

TABLE III
NUMBER OF SENTENCES IN EACH EMOTIONAL CATEGORY SUBSET IN THE

MSP-PODCAST CORPUS.

Corpus Subset Partition
Subset Train Dev Test
High 16,898 3,312 5,247
Mid 15,891 2,898 5,987

Neut1 13,927 4,823 5,832
Neut2 14,051 4,846 5,893

bias is between the 40% and 60% quantiles, and the Neut2
subset has sentences whose bias is between 0 and 0.405. Fig.
12d visualizes the subsets, where the High subset is shown in
blue, the Mid subset is shown in orange, and the Neut1 subset
is shown in black. Table III shows the number of sentences in
each partition of each emotional category subset.

1) Inter-Evaluator Agreements of Subsets: We estimate the
inter-evaluator agreements of the different subsets. The inter-
evaluator agreement of the labels gives us an idea of the
reliability of the labels, especially for SER tasks. Noisy and
inconsistent emotional labels often lower the performance of
SER models [29]. We use the Krippendorff’s Alpha coefficient
[1] to evaluate the agreement of the attribute labels, and we
use the Fleiss’ Kappa [30] to evaluate the agreement of the
emotional category labels. Table IV shows the calculated inter-
evaluator agreements. The unbiased subsets have the highest
agreements, followed by the full MSP-Podcast dataset (Full).
For the attribute labels, the biased subsets have the lowest
agreements. This result is expected since their range of biases

TABLE IV
INTER-EVALUATOR AGREEMENTS FOR THE DIFFERENT SUBSETS. WE USE

THE KRIPPENDORFF’S ALPHA FOR EMOTIONAL ATTRIBUTES AND THE
FLEISS’ KAPPA FOR EMOTIONAL CATEGORIES.

Corpus Emotional Attribute Corpus Emotional
Subset Arousal Valence Dominance Subset Categories

Full 0.413 0.372 0.358 Full 0.174
Neg 0.306 0.327 0.255 High 0.128
Pos 0.351 0.257 0.235 Mid 0.070

Neut1 0.622 0.601 0.652 Neut1 0.446
Neut2 0.653 0.582 0.665 Neut2 0.444

is much larger (Fig. 12). Therefore, the labels are pushed by
different amounts during the annotation. For the emotional
categories, we observe an opposite result. The Mid subset has
the lowest agreement, possibly due to more confusion during
more neutral priming. Annotators might agree more often if
they are all strongly primed (e.g., with only Happy sentences).

2) Preparing Data for Experiments: The subsets shown
in Tables II and III do not have the same emotional dis-
tributions. They also do not have the same distribution as
the full MSP-Podcast dataset. When training and testing
models, the emotional distribution differences could affect the
comparisons between the models. For example, Sridhar and
Busso [31] showed that predictions for arousal, dominance,
and valence have varying uncertainty for different values of
the emotional attributes. To isolate the effect of the affective
priming bias, we normalize the emotional distributions of the
subsets using an under-sampling strategy. We sample each
subset according to a defined emotional distribution. Since
all we require is the same or similar emotional distribution
between each subset, we could choose an arbitrary emotional
distribution. We decide to follow the emotional distribution of
the full MSP-Podcast corpus. We fit a Gaussian distribution
for each attribute: arousal N (4.37,0.96), valence N (3.99,0.90),
and dominance N (4.50,0.59). Next, we bin the labels ac-
cording to the following edges: [1, 2, 2.5, 3, 3.25, 3.5, 3.75,
4, 4.25, 4.5, 4.75, 5, 5.5, 6, 7]. We use these non-uniform bins
since most of the data is concentrated around the neutral
attribute values (3-5). Next, we calculate the area under the
fitted Gaussian for each bin. We take the ratio of the area
of each bin to the area under the Gaussian truncated at 1
and 7 (the label limits). We are left with the percentage of
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sentences to be randomly selected in each attribute label bin.
To define the desired emotion distribution for the emotional
categories, we count the number of sentences with the same
consensus labels and divide by the full number of sentences
to get the rate for each category. We use the following cat-
egories: [Anger, Sadness, Happiness, Surprise, Fear, Disgust,
Contempt, Neutral, Other] with “Other” containing any other
label not listed, including “no agreement.” We are left with a
percentage of sentences for each emotional category.

To sample each subset, we first take all the sentences in
each subset partition (train, development, and test) and bin
their labels using the predefined edges or by category. Then,
we sample sentences for each partition. For the attributes, we
choose around 7,000 sentences for each train set, 700 for each
development set, and 1,400 for each test set. For the emotional
categories, we choose around 10,000 sentences for each train
set, 1,000 for each development set, and 2,000 for each test set.
We randomly sample (without replacement) sentences from
each bin or category to match the desired percentage of each
bin of their corresponding attribute or emotional category. For
example, if the wanted percentage for valence bin 3 is 9%, we
will randomly sample 7, 000∗0.09 = 630 sentences from bin 3
of each valence train set. Most subset bins have more sentences
than we need in the bin or category. However, some have
fewer sentences than needed. In those cases, we choose all
sentences available in that bin or category and then randomly
sample (with replacement) the same sentences until we have
the required number.

B. SER Model Details

We implement our approach with the “wav2vec2-large-
robust” architecture [32], which showed the best recognition
performance in the study of Wagner et al. [33] among the
variants of the Wav2vec2.0 model [34]. We first import the pre-
trained “wav2vec2-large-robust” model from the HuggingFace
library [35]. Then, we fine-tune the transformer encoder with
the downstream head using specific subsets of the corpus
depending on the evaluation, as explained in Sections V-C,
V-D, and V-E. For the attribute models, the downstream head
consists of one fully connected layer and a linear output layer.
The fully connected layer has 1,024 nodes, layer normaliza-
tion, and the rectified linear unit (ReLU) as the activation
function. The linear output layer has three nodes to predict
the emotional attribute scores for arousal, dominance, and
valence. For the emotional category models, we use the same
downstream head used for emotional attributes. The only
difference is the output layer, which has four nodes to predict
category probabilities, followed by a softmax layer. We predict
one of four categories, [Anger, Sadness, Happiness, Neutral],
in the emotional category experiments.

We freeze the convolutional feature encoder during fine-
tuning as it performs better than updating all the param-
eters [36]. We aggregate the frame-level representations of
the transformer encoder to the sentence-level representation
by using average pooling per utterance. Then, we feed the
representation to the downstream head. For the regularization,
dropout is applied to all the hidden layers, with a rate set

to p = 0.5. To fine-tune the pre-trained SER model, we
use specific subsets of the MSP-Podcast corpus depending on
the evaluation, as explained in Sections V-C, V-D, and V-E.
We apply Z-normalization to the raw waveform by using the
mean and standard deviation estimated over the training set,
and min-max normalization to the emotional attribute labels,
mapping them into the range of 0 to 1. We use the Adam
optimizer [37] with a learning rate of 0.0001. We use 32
utterances per mini-batch and update the model for ten epochs.
We employ early stopping using the development set to avoid
overfitting.

C. Testing SER Model with Biased Subsets

For the experiments in this section, we train the model
with the full MSP-Podcast train set. Then, we test the models
with the sampled test subsets. The subset All is sampled from
the full MSP-Podcast test set in the same manner as the
other sampled subsets (Section V-A2). The subset Neg+Pos
is sampled from the combined Neg and Pos subsets. Table
V shows the average attribute results of ten testing trials
(sampling test sets ten times) with the standard deviation
(STD) of the ten trials in brackets. For all three attributes,
the model had the highest test CCC when testing on the Neg
subset. The model can predict the labels of the biased subsets
(i.e., Neg, Pos, and Neg+Pos) with higher performance than
the labels of the unbiased subsets (i.e., Neut1 and Neut2).
Table VI shows the average emotional category results of ten
testing trials. Like the attribute results, the model can predict
the biased subset labels (e.g., High and Mid) better than the
unbiased subset labels. The model had the highest test macro
F1 score and unweighted average recall (UAR) when testing
on the Mid subset (i.e., Neut1 and Neut2). Our hypothesis
for these results comes from Sridhar and Busso [31], where
they showed that SER models are uncertain when predicting
neutral emotional values and more certain when predicting
extreme emotional values. The biased subsets have labels that
are shifted to extremes compared to those without priming.

We hypothesize that (a) our models follow the uncer-
tainty pattern seen in Sridhar and Busso [31], making
them more certain of the biased labels, as they are
more extreme than the unbiased labels. Therefore,
we hypothesize that (b) due to the extreme biased
labels, the models are also more accurate when pre-
dicting and learning from biased labels as opposed
to unbiased ones.

The STDs shown in Tables V and VI show that, in general, the
model is more uncertain when predicting the unbiased labels,
but this pattern is not as clear as the lower prediction results.
We further analyze these results in Section V-G, where we
explore the model’s performance for specific attribute values
to test our hypothesis on the accuracy of our model.

D. Training SER Model with Biased Subsets

Next we trained the model with all the different sampled
subsets and tested with the full MSP-Podcast test set. Tables
VII and VIII show the average test results for ten trials
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TABLE V
AVERAGE TEST CCC RESULTS OVER 10 TESTING TRIALS USING THE

MODEL TRAINED WITH THE FULL MSP-PODCAST TRAIN SET AND TESTED
ON THE SAMPLED ATTRIBUTE PARTITIONS. THE STD OF THE 10 TRIALS

ARE SHOWN IN BRACKETS.

Sampled Emotional Attribute
Test Set Arousal Valence Dominance

All 0.694 [0.02] 0.586 [0.01] 0.641 [0.01]
Neg 0.782 [0.01] 0.638 [0.01] 0.702 [0.01]
Pos 0.748 [0.01] 0.566 [0.02] 0.690 [0.01]

Neg+Pos 0.761 [0.01] 0.592 [0.02] 0.698 [0.01]
Neut1 0.550 [0.02] 0.505 [0.01] 0.508 [0.02]
Neut2 0.522 [0.02] 0.496 [0.01] 0.495 [0.01]

TABLE VI
AVERAGE TEST MACRO F1 AND UAR RESULTS OVER 10 TESTING TRIALS
USING THE MODEL TRAINED WITH THE FULL MSP-PODCAST TRAIN SET

AND TESTED ON THE SAMPLED EMOTIONAL CATEGORY PARTITIONS. THE
STD OF THE 10 TRIALS ARE SHOWN IN BRACKETS.

Sampled Metric
Test Set Macro F1 UAR

All 0.478 [0.006] 0.507 [0.006]
High 0.481 [0.007] 0.509 [0.008]
Mid 0.504 [0.006] 0.536 [0.007]

Neut1 0.408 [0.009] 0.430 [0.009]
Neut2 0.415 [0.008] 0.437 [0.008]

(sampling test sets and initializing the network ten times)
with the STD in brackets. These results are similar to our
previous results in Table V, where the unbiased subsets show
the worst results. The model has a harder time learning an
effective connection between the speech and emotional labels
when using unbiased labels, even when most test labels are
unbiased (the full test set). As opposed to our previous results,
the models trained on the All subset perform similarly to the
models trained on the biased subsets. These results suggest
that having at least some biased labels in the training set keeps
the performance high, where more biased labels improve the
model but have a minimal effect compared to not having any
biased labels. We will analyze in more detail the uncertainty
of our models for different prediction values in Section V-F
to test our hypothesis on the uncertainty of our models.

E. Training and Testing SER Model with Biased Subsets

We also test and train all the models with the sampled
subsets. The results of these experiments are shown in Tables
IX and X. The best result for each sampled test set is shown
in bold, and the best result for each sampled train set is shown
in italics. In general, the attribute models perform best when
predicting on the Neg test subset, for all attributes. For arousal,
the models trained with the Neg+Pos subset perform the best
for all test sets. For valence and dominance, the models trained
with the Neg subset perform best. The arousal and dominance
results show that model performance drops when training with
the unbiased subsets. However, there are bigger performance
drops when testing with the unbiased subsets. All the models
can predict the biased labels much better than the unbiased
labels. However, training with the unbiased labels still gives
information on predicting the biased labels. The valence results
show the opposite, where the performance drop is larger when
training with unbiased subsets than when testing on them. For

TABLE VII
AVERAGE TEST CCC RESULTS OVER 10 TRAINING TRIALS USING THE

FULL MSP-PODCAST TEST SET AND TRAINED ON THE SAMPLED
ATTRIBUTE PARTITIONS. THE STD OF THE 10 TRIALS ARE SHOWN IN

BRACKETS.

Sampled Emotional Attribute
Train Set Arousal Valence Dominance

All 0.639 [0.02] 0.337 [0.04] 0.541 [0.05]
Neg 0.640 [0.02] 0.397 [0.03] 0.549 [0.04]
Pos 0.642 [0.01] 0.339 [0.06] 0.538 [0.06]

Neg+Pos 0.654 [0.01] 0.383 [0.05] 0.544 [0.02]
Neut1 0.615 [0.01] 0.322 [0.06] 0.530 [0.04]
Neut2 0.602 [0.03] 0.294 [0.08] 0.522 [0.05]

TABLE VIII
AVERAGE TEST MACRO F1 AND UAR RESULTS OVER 10 TRAINING

TRIALS USING THE FULL MSP-PODCAST TEST SET AND TRAINED ON THE
SAMPLED EMOTIONAL CATEGORY PARTITIONS. THE STD OF THE 10

TRIALS ARE SHOWN IN BRACKETS.

Sampled Metric
Train Set Macro F1 UAR

All 0.429 [0.005] 0.465 [0.005]
High 0.437 [0.004] 0.474 [0.005]
Mid 0.431 [0.004] 0.468 [0.004]

Neut1 0.389 [0.020] 0.432 [0.012]
Neut2 0.403 [0.027] 0.446 [0.018]

valence, models trained with unbiased labels cannot predict
unbiased or biased labels, while those trained with biased
labels can predict unbiased labels.

The emotional category models show similar trends, where
testing with the Mid subset gives the best results and training
with the High subset gives the best results. Like the arousal
and dominance results, the performance drop when going from
testing with biased to unbiased subsets is larger than the drop
when going from training with the biased to unbiased subsets.
All emotional category models have a hard time predicting
the unbiased labels, while training with the unbiased labels
still gives the model information about the biased labels. The
attribute and emotional category results support Hypothesis
(b). We consistently observe that the models are more accurate
when predicting and learning from biased labels. To support
the rest of our hypothesis, we further explore our prediction
and uncertainty results in the next two sections.

F. Uncertainty Analysis of Models

The results in the previous three sections show that even
though the unbiased subsets of the MSP-Podcast corpus have
a much higher inter-evaluator agreement, the models trained
with the unbiased subsets perform the worst. Previously, we
hypothesized that the results were due to the model becoming
more uncertain when the train labels were less extreme.
Previous work has shown that an SER model’s uncertainty
depends on the values being predicted [31]. We conduct a
similar analysis here, where we take the attribute predictions
of the full MSP-Podcast test set done by the models trained
on the sampled attribute subsets and calculate the variance
of each prediction. Our analysis relies on one training trial.
To get the variance of the predictions, we test the model 100
times using Monte Carlo Dropout [38] and use the mean of

This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2025.3597034

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on August 07,2025 at 21:30:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, MARCH 2025 13

TABLE IX
AVERAGE TEST CCC RESULTS OVER 10 TRAINING TRIALS, TRAINED AND

TESTED WITH SAMPLED MSP-PODCAST ATTRIBUTE PARTITIONS.

A
ro

us
al

Sampled Sampled Test Set
Train Set All Neg Pos Neg+Pos Neut1 Neut2

All 0.654 0.740 0.698 0.716 0.526 0.503
Neg 0.652 0.745 0.705 0.719 0.524 0.501
Pos 0.657 0.746 0.712 0.726 0.527 0.499

Neg+Pos 0.669 0.759 0.725 0.737 0.534 0.507
Neut1 0.630 0.703 0.670 0.682 0.500 0.479
Neut2 0.616 0.694 0.650 0.666 0.500 0.477

Va
le

nc
e

Sampled Sampled Test Set
Train Set All Neg Pos Neg+Pos Neut1 Neut2

All 0.297 0.311 0.285 0.294 0.280 0.274
Neg 0.354 0.373 0.343 0.354 0.326 0.319
Pos 0.300 0.310 0.297 0.302 0.279 0.273

Neg+Pos 0.342 0.358 0.334 0.346 0.318 0.312
Neut1 0.276 0.295 0.271 0.281 0.265 0.264
Neut2 0.256 0.271 0.249 0.254 0.243 0.240

D
om

in
an

ce

Sampled Sampled Test Set
Train Set All Neg Pos Neg+Pos Neut1 Neut2

All 0.564 0.625 0.617 0.620 0.466 0.454
Neg 0.576 0.641 0.636 0.634 0.470 0.458
Pos 0.567 0.616 0.624 0.615 0.462 0.448

Neg+Pos 0.571 0.631 0.628 0.629 0.468 0.455
Neut1 0.544 0.599 0.581 0.585 0.476 0.454
Neut2 0.533 0.581 0.568 0.568 0.459 0.444

TABLE X
AVERAGE TEST UAR RESULTS OVER 10 TRAINING TRIALS, TRAINED AND

TESTED WITH SAMPLED MSP-PODCAST EMOTIONAL CATEGORY
PARTITIONS.

Sampled Sampled Test Set
Train Set All High Mid Neut1 Neut2

All 0.456 0.458 0.484 0.397 0.403
High 0.465 0.469 0.490 0.405 0.413
Mid 0.457 0.462 0.487 0.393 0.399

Neut1 0.429 0.436 0.447 0.380 0.386
Neut2 0.444 0.445 0.457 0.390 0.395

the 100 trials as the prediction and the variance as a measure
of uncertainty.

To compare the model uncertainty of the differently biased
models, we take the mean of the variance values of the
sentences in the same attribute prediction bin for all models
trained on the subsets. We plot the mean of the variances
versus the attribute prediction bins in Fig. 13. For all attributes,
the models trained on the Neut2 subsets show the highest
uncertainty for all prediction values. This coincides with the
performance results, where the models trained with the Neut2
subsets performed the worst. The models trained with the
Neut1 subsets also performed badly. However, their predic-
tion uncertainties are not consistently higher than the better-
performing models. The models trained on the All subsets
perform much better than those trained with the unbiased
subsets but still worse than the biased subsets. The prediction
uncertainties of those models are not consistently above all
the better performing models. Overall, the uncertainty of the
model predictions somewhat coincides with the performance
differences between models trained with biased and unbiased
subsets. By comparing the uncertainty of specific prediction
values, we observe that most models show lower uncertainty
when predicting neutral values. These results contradict Hy-
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Fig. 13. Plots of the mean of the variance of the attribute predictions over 100
Monte Carlo dropout testing trials. Before taking the mean, the variances were
binned according to their corresponding average sentence attribute predictions.
The models were tested on the full MSP-Podcast test partition.

pothesis (a) since our models are generally more certain
about neutral emotions as opposed to extreme emotions. A
key observation is that the study of Sridhar and Busso [31],
which motivated Hypothesis (a), was conducted with hand-
crafted features using fully connected layers. The analysis
of this study uses Wav2vec2.0, which is a transformer-based
self-supervised learning (SSL) model. The architectural differ-
ences can explain the disagreements in the relation between
emotional attributes and uncertainty level observed in this
study and Sridhar and Busso [31]. However, we note that our
results do support Hypothesis (b). They show lower prediction
uncertainty when learning from more biased labels.

G. Prediction of Labels Analysis

The previous section showed that the uncertainty of our
models coincides with the performance differences between
the biased (Neg and Pos) and unbiased (Neut1 and Neut2) la-
bels. This section explores the model performance for different
label values. In Section V-C, we hypothesized that the reason
for the higher performance of models trained with biased
labels is that the model can more easily learn from and predict
more extreme labels (Hypothesis (b)). Since the biased labels
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are pushed to more extreme values, they should be easier to
predict. We take the model trained with the full MSP-Podcast
train set and test it with each unsampled subset (shown in
Table II) 10 times. We then split the test sets into label bins
and randomly chose 50 sentences in each bin and took the
CCC between the labels and the predictions. This procedure
is done 10 times for all subsets and then the CCC values are
averaged within each subset. We chose this procedure because
the CCC is sensitive to the number of samples compared.

We plot the average CCC values versus the bin values in
Fig. 14. In general, the model is more accurate for sentences
with labels in the [4, 6) range for arousal and dominance
and [2, 6) for valence as opposed to the more extreme labels
close to 1 and 7. However, we gain further insight by noting
that the performance differences for arousal and dominance
between the biased and unbiased labels are due to the extreme
emotion labels. When we compare the performance differences
between biased and unbiased models, we observe larger dif-
ferences in the extreme values of the attributes. The model
has a higher accuracy at the extremes for the biased labels
(Neg and Pos), which shows that the extreme emotions of the
unbiased labels are more difficult to predict than the extreme
emotion biased labels for arousal and dominance. The large
gap supports the results in Table V. For valence, we do not
see a subset that is easier to predict than the other subsets
across most bins. The unbiased labels with negative values
are easier to predict while the biased labels with positive
values are easier to predict. Like in Section V-F, these results
contradict Hypothesis (a). The model can better predict neutral
emotion labels as opposed to more extreme labels. However,
our results partly support Hypothesis (b). The model is more
accurate when predicting biased labels as opposed to more
unbiased ones. Moreover, this difference seems to be due to
their respective extreme emotion labels. We can conclude that
the models can better predict and learn from biased labels
due to their more extreme labels. However, the reason for this
cannot be explained by Hypothesis (a). Further research into
this problem is needed to fully explain these findings.

VI. DISCUSSION

In Section I, we introduced the three questions we wanted
to answer with this paper. The first and second questions are:
does the affective priming effect occur in emotional attribute
labeling of speech? and is the affective priming effect observed
in categorical labels? We answered these questions in Section
IV. Our experiments in Section IV-A explored if we could
observe affective priming in two emotional datasets, the MSP-
Podcast and BIIC-Podcasts corpora. We indeed observed that
when evaluators annotated previous sentences with extreme
values, they were more likely to annotate the next sentence
towards that extreme, which is consistent with the affective
priming effect. In Section IV-B, we explored if we could
see a similar effect in the emotional category annotations of
both corpora. We were also able to observe such an effect,
where annotators were more likely to choose a category as the
primary emotion if they had been primed with that category.

The third question is Does the affective priming effect
impact SER performance? To answer this question, we first
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Fig. 14. Plots of the average test CCC results over 10 testing trials using
the model trained with the full MSP-Podcast train set and tested on the un-
sampled subsets.

created an expected affective priming bias measure for the
MSP-Podcast corpus (Sec. IV-C) to be able to define subsets
of the corpus with clear affective priming effects (Sec. V-A).
The biases for the attribute labels were concentrated around
a 0 bias, showing that most of the attribute labels of the
MSP-Podcast corpus are not greatly impacted by the affective
priming effect. The SER evaluations were presented in Section
V. We used a Wav2Vec 2.0-based SER model (Sec. V-B) to
perform our experiments. In Section V-C, we trained the model
with the full MSP-Podcast train partition and tested the model
with the differently biased subsets. The results showed that the
model can predict the biased labels with higher performance
than the unbiased labels. In Section V-D, we trained the model
with the differently biased subsets to explore how the affective
priming effect affects SER modeling. In Section V-E, we also
evaluate training and testing the SER models with biased and
unbiased partitions.

Similar to the previous results, all the models, regardless of
which subset was used to train them, performed better when
testing on the biased subsets. The models had much worse
results when testing on the unbiased subsets. All results clearly
show that adding labels biased by affective priming leads to
better SER results, even though the biased labels have much
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worse inter-evaluator agreements (Sec. V-A1). We hypothesize
that a reason for the SER modeling results is that the SER
model becomes more confused by the unbiased labels. We
explore this possibility in Section V-F, where we calculated the
variance of the model predictions using Monte Carlo dropout
to give us a measure of the uncertainty of the model when
it was trained using differently biased labels. In general, the
models trained with unbiased labels show higher uncertainty.
However, the pattern is not as clear as the performance results.
The uncertainty of the models does not completely explain
the performance increase when going from a model trained
with unbiased labels to more biased labels. We also explored
the possibility that the model has a harder time predicting the
unbiased labels because they are less extreme. We explore this
in Section V-G, where we took the CCC between labels and
predictions from the model trained with the full MSP-Podcast
train set for different attribute values using bins. We observed
that the model does seem to have a harder time predicting
the unbiased extreme labels compared to the biased extreme
labels, at least for arousal and dominance. However, the model
can best predict the neutral labels without much difference
between the biased and unbiased labels. More evaluations are
needed to understand these interesting results fully.

The consistent and surprising performance results shown
in Sections V-C, V-D and V-E could be explained by the
tendency of people to anchor themselves when dealing with
uncertain situations [19]. When evaluators are not given some
form of prime or a similarly uncertain prime (e.g., no pre-
vious sentences or more nuanced previous sentences), they
might become even more uncertain. They might anchor to
a part of the sentence that is less related to the emotional
content (e.g., volume, accent, gender, or audio quality). Other
annotators could consistently anchor to a similar aspect of the
sentence, explaining the higher inter-evaluator agreement, but
each sentence could have different anchors. This could lead
to having some emotional labels unbiased by the affective
priming effect that the model connects to aspects of the audio
unrelated to emotional content, leading to somewhat confident
predictions that are not good emotional predictions. Further-
more, emotionally unrelated aspects of the speech audio could
be easier for the model to extract, as the Wav2Vec 2.0 model is
a general speech model. The model might focus on the “easier”
label-feature pairs, especially when they are more abundant.
Encouragingly, the models trained with a mixture of biased and
unbiased labels perform close to the biased subsets, even when
the ratio of biased to unbiased is low. The performance gap is
closed when considering the larger amount of data available
when combining all available labels.

Our experiments and analyses focused on the presence of
the affective priming effect in emotional annotations, which
were conducted by providing isolated sentences in random
order. Our analysis on annotator agreement (Section V-A1;
Fig. 6) showed that this effect is present in all annotators,
regardless of their measured reliability. Affective priming is
an unconscious phenomenon that is hard to “train away,” and
would be cost-prohibitive to do so. However, our analysis
on the expected affective priming bias of the MSP-Podcast
corpus (Fig. 12) shows that most sentences experience neu-

tral priming since the ordering of sentences is inconsistent
between annotators and most spoken natural sentences are
neutral. Furthermore, our modeling results show that a mix
of primed and unprimed sentences still have good modeling
results. Therefore, increasing the number of annotations in
an emotional corpus provides a good way of diminishing
the affective priming effect on the whole corpus, as long as
those annotations are subject to a variety of priming. The
out-of-order and inconsistent annotation sequences used in the
MSP-Podcast and BIIC-Podcast corpora ensure that annotators
experience a variety of affective priming.

Another common annotation method is annotating con-
secutive sentences in their original context, i.e., annotating
each sentence in a conversation in the order of the origi-
nal conversation. This method does not eliminate affective
priming but instead ensures that all annotators receive the
same priming. In real-life conversations, affective priming still
occurs. Therefore, the second annotation method is a valid
annotation process that does not need to remove affective
priming. However, the labels derived from these annotations
are not necessarily consistent with the labels from out-of-
context annotations [17], [18], [39]. Moreover, labels derived
from in-context annotations often require a model that takes
context into account; SER models that do not incorporate
context into their predictions perform better for out-of-context
labels [18]. Out-of-context labels are useful for applications
where context is not available, and in those cases, inconsistent
ordering during annotation is necessary to reduce the effect of
affective priming.

VII. CONCLUSION

In this paper, we showed that the affective priming effect
affects emotional annotations of speech when conducted out-
of-context. We showed this effect for both the MSP-Podcast
corpus and the BIIC-Podcast corpus, demonstrating that the
affective priming effect is general and we should expect
it regardless of the language. Furthermore, we showed that
affective priming creates a bias in the emotional labels of
the MSP-Podcast corpus that affects SER models trained on
the data. SER models trained on labels affected by priming
have more certain predictions and better performance results.
We partially explain these results by exploring the certainty
of the predictions. Fortunately, the MSP-Podcast corpus and
similar datasets contain a mixture of labels that are affected
to different degrees by the affective priming effect. The SER
modeling results in this paper suggest that SER models can
successfully learn with such a mixture of labels.

Further exploration of the affective priming effect on emo-
tional annotations is useful, as this paper only focuses on an-
notations of speech. Many studies have proposed multimodal
strategies to recognize emotions [40]–[42]. It would be inter-
esting to understand how the level of priming changes as new
modalities are presented to the evaluators. Another interesting
direction is to understand the effect of priming in databases
annotated with time-continuous annotations [43]. Since the
field of affective computing relies on effective emotional
labels, we hope that our work in this paper encourages the field
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to explore this effect and other subconscious phenomena that
can affect the emotional labels that we rely on. Understanding
these effects is important to bring new insights to design better
emotional computational models.
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