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Harnessing Multimodal Unlabeled Data for
Enhanced Speech Emotion Recognition
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Abstract—Speech emotion recognition (SER) often faces chal-
lenges due to the lack of large, annotated datasets. The presence
of abundance unlabeled data offers a chance to explore methods
that could significantly improve SER systems. This study explores
the feasibility of enhancing general speech models by incorporat-
ing unimodal and multimodal training objectives derived from
unlabeled data, specifically tailored to extract emotional content.
These multimodal objectives aim to refine self-supervised learning
(SSL)-based representations that, while effective in SER, were not
originally created to extract emotional cues from speech. Our
methodology introduces a set of multimodal objectives focused
on capturing information from three primary sources: acoustic
signals, through a representation objective based on the extended
Geneva Minimalistic Acoustic Parameter Set (eGEMAPS); facial
expressions, via visual representations obtained from a pre-
trained facial expression recognition system; and textual content,
through pseudo-labels generated by a pre-trained emotion senti-
ment model. These objectives are automatically generated from
70.7 hours of unlabeled emotional content captured in naturalistic
settings.We apply our strategy to four state-of-the-art SSL-based
speech models, aiming to enhance their capabilities in SER tasks
with multimodal signals while still keeping inference strictly
audio-only. Our experimental evaluations across the CREMA-
D, MSP-IMPROV, and MSP-Podcast datasets demonstrate that
our approach significantly improves SER performance, especially
in settings with limited labeled data.

Index Terms—speech emotion recognition (SER), unlabeled
multimodal datasets, unsupervised training, pre-trained speech
models

I. INTRODUCTION

HUMAN communication utilizes a multitude of signals
to accurately convey an intended message, clarifying

its meaning and intention, highlighting its emphasis, and
conveying its emotions. In daily interactions, we draw from a
mix of auditory, visual, and other sensory cues to produce and
perceive emotions [1]. Recognizing these signals can be instru-
mental in developing precise emotion recognition models, even
when the goal is to build a speech emotion recognition system
(SER). While traditional SER systems predominantly focus on
acoustic features [2]–[7], this study explores the complemen-
tary information present in speech cues, facial expressions,
and textual information to refine SER models that are already
pre-trained. Spoken language, facial expressions, and written
text provide complementary emotional information that can
be leveraged in building speech representations. By tapping
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into the complementary information across these modalities,
we aim to further optimize our SER models. The primary
objective of this paper is to investigate how multimodal
unlabeled data, combined with the strength of pre-trained
models, can elevate the performance of SER models. This
approach is especially promising for enhancing supervised
learning techniques for SER when labeled data is scarce.

The motivation behind this paper is to explore the use of
multimodal unlabeled data to craft speech emotional represen-
tations, aiming to improve the performance of state-of-the-art
pre-trained speech models such as Wav2vec 2.0 [8], WavLM
[9], HuBERT [10], and Data2vec [11]. The advances in self-
supervised learning (SSL) have demonstrated the capability to
generalize across numerous downstream tasks. Additionally,
studies have shown that fine-tuning [12], [13] or using speech
representations [14] from such models has proven effective for
achieving good SER performance. Within the SSL framework,
models are predominantly pre-trained on pretext tasks, where
labels are auto-generated. A strategy often used in this area
is the masked language modeling (MLM) task. Here, certain
tokens are replaced with either the < MASK > token
or a random substitute, tasking the model with predicting
these masked tokens [15], [16]. Following this strategy, many
models, such as Wav2vec [17], have adopted contrastive ob-
jectives to learn speech representations. Specifically, Wav2vec
is fine-tuned to predict the subsequent time-step, guided by a
contrastive loss. Historically, a few studies have explored the
use of modalities outside of speech to enhance SER. Examples
include using pre-trained language models (LM) to harness
the rich information learned from training on large datasets
for text sentiment analysis [18], or integrating audio-visual
tasks to train models to be used for SER [19]. Given the rich
nature of human communication, we hypothesize the benefits
of leveraging multimodal data, even when the goal is to build
a speech-based emotion recognition system.

This paper proposes to integrate a multi-task objective
involving acoustic, visual, and textual features for the pre-
training of speech models to improve their SER capabili-
ties. Our fine-tuning strategy consists of predicting feature
representations across modalities, where the input is just
acoustic features (e.g., the prediction of feature representa-
tions for facial expressions using speech). Given that these
representations are originally trained to recognize emotional
information, we obtain SER models after fine-tuning that are
highly discriminative in recognizing emotions from speech.
For the speech modality, we incorporate hand-crafted features
tailored for emotion recognition [20]. We use these hand-
crafted features, designed to capture emotional nuances, to
fine-tune our models to be more adept at recognizing emotions
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in speech. For the visual and textual modalities, we extract
features from two distinct pre-trained models that specialize
in visual [21] and textual [22] representations, leveraging
the advances and robustness achieved by these models in
their respective fields. As these models are trained on diverse
datasets, they capture a wide variety of scenarios, nuances, and
patterns within their modality representations. It is important
to note that our model remains unimodal at inference time,
using only speech as input. While we leverage multimodal
supervision during pre-training, we do not perform multimodal
fusion nor require text or visual input at test time. This feature
distinguishes our approach from standard multimodal systems
that rely on multi-stream fusion methods during inference. Our
strategy demonstrates that multimodal information is useful
during training, even when the task is unimodal.

We evaluate our proposed method on three emotion recogni-
tion benchmarks: the MSP-Podcast [23], [24], the CREMA-D
[25], and the MSP-IMPROV [26] corpora. For pre-training,
we extract audio, visual, and textual features from the MSP-
Face corpus [27] and utilize these features to pre-train speech
models including Wav2vec 2.0 [8], WavLM [9], HuBERT [10],
and Data2vec [11]. Our experimental evaluation compares
two approaches: one where we pre-train these models using
our method and then fine-tune them for the target task, and
another where we directly fine-tune the models for the target
task without the multimodal pre-training phase. Our findings
highlight enhanced performance when leveraging a model
pre-trained with multimodal representations during the initial
phase, as opposed to methods that only perform the fine-tuning
step. Furthermore, we ablate the influence of individual modal-
ities on the performance of our proposed method, specifically
focusing on the Wav2vec 2.0 model [8]. Our observations
underscore the significance of incorporating all the modality
tasks during the pre-training phase to ensure strong results.

The rest of this paper is organized as follows: Section
II reviews previous studies that are relevant to this work.
Section III describes the proposed approach introduced in this
study, the experimental settings for the implementation of the
proposed approach, and the description of the corpora used
to train and test the models. Section IV presents our exper-
imental evaluations, contrasting the results of the proposed
approach with strong baselines and evaluating the proposed
approach in low-resource settings. In Section V, we present
an ablation study on the proposed approach. Lastly, Section
VI summarizes the contributions of this work, highlighting our
experiments and discussing possible future research directions.

II. RELATED WORK

Effective modeling of representations from speech signals
is crucial for SER tasks. SER problems have been formu-
lated under different settings: supervised learning [28], semi-
supervised learning [29], and unsupervised settings [30]. Over
the years, SER has evolved through many training setups.
Early studies relied on handcrafted features to obtain rep-
resentations from acoustic inputs [20], [31]–[34]. With the
advancements in SSL speech models [8]–[11], studies have
underscored the utility of leveraging these pre-trained encoders

as foundational elements for SER [12], [13], [35], offering
superior performance over conventional approaches [15], [36],
[37].

A. Self-Supervised Learning

With the advances of self-supervised learning (SSL), sev-
eral notable methods have emerged [38], including Wav2vec
2.0 [8], WavLM [9], HuBERT [10], and Data2vec [11]. In
SSL, models employ techniques that leverage information
extracted from the input data itself as labels to learn speech
representations, which are beneficial for downstream tasks.
These models typically use masked language modeling (MLM)
tasks as training objectives. This strategy involves replacing
some tokens with either the token < MASK > or a random
token, and then prompting the model to predict the masked
tokens [15], [16]. Additionally, these models have incorporated
contrastive objectives to extract speech representations, exem-
plified by Wav2vec [17], which is optimized for solving a next-
time-step prediction task using a contrastive loss. Wav2vec
2.0 [8] merges contrastive learning with masking, similar to
the contrastive predictive coding (CPC) model [39], using
InfoNCE loss to enhance the similarity between different types
of representations.

In contrast, HuBERT [10] uses quantized acoustic features,
learned via k-means. This strategy discretizes the speech
inputs, focusing on learning continuous latent representations
for unmasked timesteps and capturing long-range temporal
dependencies for the masked prediction. WavLM [9] builds
on HuBERT, adding a gated relative position bias to the
transformer self-attention mechanism and an utterance mixing
strategy for training, which involves combining signals from
different speakers to improve the model’s ability to distinguish
overlapping speech. Data2vec [11] creates targets Y using an
exponential moving average (EMA) of its parameters, inspired
by its application in self-supervised visual learning [40], [41].
It averages hidden representations from the top k layers of the
EMA teacher network for unmasked inputs.

While studies have shown improved performance for SER
tasks [12], [13], [42], [43], it is important to note that these
SSL models were not designed for SER. Their primary pur-
pose was to create general speech processing frameworks. We
hypothesize that adapting these SSL models with emotion-
related multimodal objectives can lead to more emotionally
discriminative speech representations.

B. Multimodal Learning to Enhance SER

Multimodal learning has been extensively explored in the
field of emotion recognition, with various studies investigating
methods to combine different modalities with speech. These
include audio-text combinations [44]–[47], audio-visual com-
binations [48]–[54], and the integration of all three modalities
[55]–[57]. In addition, studies have explored several methods
to combine these modalities, such as hierarchical learning inte-
gration [58], cross-modal integration [59]–[61], and decision-
level integration [62], [63].

Further extending the scope from multimodal learning,
recent studies have explored the use of multimodal cues to
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enhance speech representations for unimodal systems [18],
[19], [64]. Shon et al. [18] investigated the application of
a BERT-based system [65] to generate pseudo labels for a
dataset (i.e., positive, neutral, negative sentiment). These labels
were then utilized to train speech sentiment analysis models
in a semi-supervised manner. Srinivasan et al. [44] focused
on enhancing contextual speech features by incorporating text
modality. They employed joint multimodal embeddings to
improve the audio-only representation for emotion recogni-
tion, utilizing a teacher-student framework. Shukla et al. [64]
investigated the use of visual self-supervision for learning
audio features. Their method involves visually guided self-
supervised learning of speech representations through facial
reconstruction. In our preliminary study [19], we proposed
three emotionally related tasks for pre-training a speech model
for emotion recognition. The proposed approach introduces
two facial-related tasks and one speech task for pretraining
the model to leverage the complementary relationship existing
between speech and visual cues.

In contrast to previous methods, our approach seeks to lever-
age pre-trained SSL speech models as a foundation. We aim
to enrich these models by introducing emotion-related textual,
visual, and acoustic objectives during a pre-training adaptation
phase that are specifically designed to create discriminative
emotional speech representations. This step is designed to
enhance the models’ speech representations specifically for
SER. The proposed method utilizes unlabeled data to extract
multimodal representations. These representations are then
employed in a multi-task training objective, which is tailored
to improve the accuracy of SER.

III. PROPOSED APPROACH

As shown in Figure 1, in this study, we employ acoustic,
visual, and textual cues from an unlabeled pool of emotionally
rich multimodal recordings to improve SER performance in
scenarios with limited speech data with emotional labels.
Our approach introduces a cross-modal multitask pre-training
adaptation step to prepare speech models for downstream fine-
tuning on speech emotion recognition. Figure 2 describes the
two-stage approach. The first stage takes an SSL off-the-
shelf model and pre-trains it with the proposed multimodal
objectives that are carefully designed for emotion recognition
tasks. The second stage takes the pre-trained model and fine-
tunes it using limited data with emotional labels.

We generate training objectives by retrieving emotion-
related cues from three sources: speech, text, and face, as
depicted in Figure 1. In the following subsections, we describe
the process used to retrieve each of these cues. We have
conducted extensive experiments with a pre-determined set
of multimodal objectives obtained using different models or
techniques to enhance the performance of SER systems. This
section reports the proposed approach that led to the best
performance. Section V discusses alternative implementations
and combinations of objectives that we also explored.

A. Speech Representations
For our first objective (Fig. 1a), we use SSL as input to

predict acoustic features that have been shown to convey
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(c) Facial representations extraction using EfficientNet-B2.

Fig. 1. Overview of objective generation for proposed approach.

expressive cues in speech. We formulate this objective as a re-
gression problem. We utilize the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) [20] as our target, where
the goal is to minimize the mean-squared error (MSE) (Eq.
1) between the model’s outputs and the normalized utterance-
wise eGeMAPS features extracted from the speech signal.
The eGeMAPS feature set is widely recognized for its ability
to effectively represent and analyze emotional states and has
been proven to contain relevant information for SER tasks
[2]. Its feature set is a comprehensive and standardized set
of acoustic features designed for voice research and affective
computing. It was developed to provide a minimal set of robust
and universally applicable parameters, capturing relevant vocal
characteristics across various emotional states and speaking
styles. By offering a harmonized and scientifically grounded
selection of features, the eGeMAPS set facilitates comparabil-
ity and reproducibility in voice research, making it a valuable
tool for studies in emotion recognition, clinical diagnostics,
and human-computer interaction.

The set was extracted using the OpenSmile toolkit [31] with
the configuration eGeMAPSv02, which comprises 25 low-
level descriptors (LLDs), including frequency-related mea-
sures, prosody parameters, and temporal aspects of speech.
The final parameters are obtained using functionals over each
of the 25 LLDs, creating a 25-D vector for each speech
sentence regardless of its duration. The features were extracted
using a window length of 32ms with a step size of 16ms. We
refer to this objective in the paper as O1.
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B. Textual Representations

For our second objective (Fig. 1b), we rely on an objec-
tive obtained from text. The transcription is assumed to be
unknown in the unlabeled set. Therefore, we use the ASR
model Whisper [66] to obtain automatic transcriptions from
each sentence in the unlabeled set. Our task is to use SSL as
input to predict pseudo-labels generated by a text-based senti-
ment prediction tool. We employ the pre-trained multilingual
XLM-RoBERTa-base model [22], which has been trained on
approximately 198 million tweets and fine-tuned for sentiment
analysis. This model serves to extract emotional sentiment
predictions from the retrieved textual content derived from
audio in our investigated unlabeled dataset. Prior research has
validated the efficacy of pre-trained language models in ex-
tracting sentiment information from written texts in unlabeled
speech datasets and utilizing the extracted sentiment data as
pseudo-labels within a semi-supervised training framework for
speech sentiment recognition [18]. The selected text-based
model outputs three sentiment classes: positive, neutral, and
negative. We transform these predictions into a one-hot vector,
using speech features to recognize these classes. Our objective
is then to train the model to predict the pseudo-labels and
minimize the cross-entropy (CE) loss (Eq. 2). We refer to this
objective in the paper as O2.

C. Visual Representations

For our third objective (Fig. 1c), we rely on a visual repre-
sentation obtained from a facial expression recognition system,
where the task is to predict the facial feature representation
from speech using the SSL as input. We extract facial fea-
ture representations using a pre-trained EfficientNet-B2 model
[21]. Facial expressions, stemming from muscle activity, are
prominently accentuated during speech articulation, intertwin-
ing with emotional expressions [67], [68]. As a result, it is not
surprising that facial expressions and speech are intrinsically
connected [69]. We employ the multi-task cascaded convolu-
tional neural network (MTCNN) face detection algorithm [70]
to capture these visual features. This algorithm facilitates the
extraction of facial images from each frame of the corpus using
bounding boxes. Following the facial image extraction step,
the images are resized to a uniform dimension of 224×224×3.
We extract emotional feature representations using the pre-
trained EfficientNet-B2 model [21], known for its superior
performance on the AffectNet corpus [71]. The target facial
feature representation to be predicted from speech is obtained
from the last fully connected layer before classification in
the EfficientNet-B2 model, which is a 1,408-D vector. Frame-
wise representations are extracted and averaged to derive an
overall utterance-level feature representation. Similar to the
first objective, this task also involves training our model to
minimize the mean-squared error (MSE) (Eq. 1), aligning the
model’s outputs with the normalized utterance-wise mean of
the EfficientNet-B2 model representations, derived from visual
inputs. We refer to this objective in the paper as O3.
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Fig. 2. Proposed approach overview. Stage 1 multitask adaptive pre-training
consist on training the model to predict on speech, textual, and visual
objectives. Stage 2 consisting on downstream finetuning.

D. Training Pipeline

As seen in Figure 2, our training method consists of a two-
stage strategy. In stage 1, we perform the proposed adaptive
unlabeled pre-training process of the model using a multi-
task learning setup using the emotionally-related represen-
tations obtained from the three aforementioned modalities.
Afterwards, in stage 2, we fine-tune all the parameters of the
model on the desired downstream task of SER.

1) Stage 1: In stage 1, we pre-train the transformer lay-
ers of the models investigated in this study using a multi-
task setup designed to optimize the models based on the
textual, visual, and acoustic representations extracted from
an emotionally rich audio-visual corpus used as unlabeled
data. In our approach, we utilized the MSP-Face corpus [27],
which contains close to 70 hours of emotional content from
naturalistic recordings obtained from a video-sharing website
(Sec. III-E describes the data). The speech representation
objective and the facial representation objective are optimized
using the MSE loss as shown in Equation 1:

LMSE =
1

n

n∑
i=1

||yi − ŷi||2 (1)

where n is the total number of observations, ŷi is the predicted
value for the i-th data point, and yi represents the actual
value of the i-th data point. For the speech objective, yi is
the extracted 25D vector obtained from the eGEMAPS for the
i-th input. For the visual objective, yi is the 1,408D vector
obtained from the EfficientNet-B2 model representations for
the i-th input. The term ∥yi − ŷi∥2 calculates the squared
difference between the actual and predicted values for each
data point.

The textual objective consists of a three-class classification
task based on the pseudo-labels obtained with the text-based
sentiment classifier. The loss function is optimized using the
CE loss as shown in Equation 2:

LCE = −
n∑

i=1

C∑
c=1

yic log(ŷic) (2)
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where n is the total number of observations, C represents
the number of classes, yic is a binary indicator (0 or 1) if
class label c is the correct classification for observation i, and
ŷic is the predicted probability of observation i belonging to
class c. The inner sum

∑C
c=1 yic log(ŷic) computes the log

loss for each class for a single observation and sums it across
all classes. The outer sum then accumulates this loss across
all observations.

The overall loss of the multi-task pre-training step consists
of a combination of the losses from the three proposed
objectives, as shown in Equation 3:

L = LMSEO1
+ λ ∗ LCEO2

+ LMSEO3
(3)

where LMSEO1
is the MSE loss from the first objective

(speech), LCEO2
is the CE loss from the second objective

(text), LMSEO3
is the MSE loss from the third objective (face),

and λ is a weighting factor hyper-parameter used for losses
combination.

The text objective (O2) uses the cross-entropy (CE) loss,
which operates on a different scale compared to the MSE
losses used for the speech (O1) and face (O3) objectives.
To prevent the CE loss from dominating the total loss, we
introduce a weighting factor λ to balance its contribution.
This factor ensures that all three objectives make meaningful
contributions to the optimization process. We adopt a single
scalar to prevent the CE term from overwhelming the regres-
sion objectives (different natural scales) and to keep training
simple and reproducible across backbones/datasets. Dynamic
schemes for loss balancing, such as uncertainty-based weight-
ing [72] or GradNorm [73] are also viable directions for future
exploration. The effect of different values of λ is explored in
the ablation study in Section V. Stage 1 is trained for 100
epochs until it reaches convergence on a held-out set of 15%
of the unlabeled data used for the adaptive pre-training.

As described in this section, our proposed approach relies
on pseudo-labels or representations derived from pre-trained
models, which may have intrinsic bias. To mitigate potential
cascading errors or overfitting to biases in the pseudo-labeling
sources, we treat these targets as auxiliary objectives in a
multi-task setting. The speech model is not trained to exactly
reproduce these external predictions, but to extract speech
representations that correlate with them. This soft guidance
allows the model to generalize without directly inheriting
potential artifacts or discrete errors from the original models.
We also prevent inheriting the potential bias observed in
individual modalities by jointly using text, facial, and acoustic
pre-training tasks. We analyze the bias across emotional pre-
dictions before and after the proposed pre-training approach
in Section IV-E.

2) Stage 2: Stage 2 consists of taking the pre-trained model
from stage 1 and further fine-tuning all of its transformer layers
for our emotion recognition downstream task using the corpora
explored in this study (the audio 1D CNN encoder layers
are kept frozen). This study formulates the SER task as a
classification problem, where the speech sentence is classified
into a set of emotional categories. Therefore, the models are
fine-tuned using the CE loss (Eq. 2) as the training objective.

E. Corpora
In this study, we utilize four prominent corpora: the MSP-

Podcast [23], [24], the CREMA-D [25], the MSP-IMPROV
[26], and the MSP-Face [27] corpora.

1) MSP-Podcast Corpus: The MSP-Podcast corpus [23],
[24] contains spontaneous and diverse emotional speech sam-
ples collected from various podcast recordings. This paper
uses version 1.11 of the corpus containing 151,654 speaking
turns, which is 237 hours and 56 minutes. The train set
includes 84,030 segments, and the development set includes
19,815 segments. The corpus has three test sets. In our exper-
iments, we utilize “Test1”, which contains 30,647 utterances.
These sets aim to create speaker-independent partitions. Each
sentence was annotated by at least five annotators using a
crowdsourcing protocol adapted from the study of Burmania
et al. [74]. This study focuses on four emotional categories
from this corpus: anger, sadness, happiness, and neutral state.

2) CREMA-D Corpus: The CREMA-D corpus is an au-
diovisual dataset with high-quality recordings from a diverse
group of 91 actors (48 male and 43 female), representing
various racial and ethnic backgrounds. These actors were
instructed to articulate a set of sentences, each time aiming
for a specific emotional class. The recordings utilized a green
screen as a backdrop. The data acquisition was facilitated by
two directors: 51 actors collaborated with the first director,
while the remaining 40 paired with the second director.
The emotional categorizations of these clips were assessed
by at least seven annotators across three distinct settings:
solely audio, solely video, and combined audiovisual. The
corpus consists of 7,442 clips, evaluated by 2,443 individual
raters. Our study uses the labels provided after evaluating the
audiovisual stimuli. The distribution of the consensus labels
is: 1,067 clips for anger (10,054 ratings), 1,222 for disgust
(11,429 ratings), 1,180 for fear (11,153 ratings), 1,230 for
happiness (11,730 ratings), 672 for sadness (6,347 ratings),
and 2,071 for a neutral state (19,450 ratings). We formulate
the SER problem for the CREMA-D corpus as a six-class task:
anger, disgust, fear, happiness, sadness, and neutral state.

3) MSP-IMPROV Corpus: The MSP-IMPROV corpus [26]
serves as the second audiovisual resource that we consider.
This corpus was devised to probe the nuances of emotional
perception [75]. A unique aspect of this corpus was the need to
maintain consistent lexical content for target sentences, spoken
while the speaker conveyed different emotions. Instead of
merely instructing actors to recite sentences with varied emo-
tions, a protocol was employed to create authentic emotional
renditions by designing hypothetical two-person scenarios that
would prompt a participant to utter the target sentence with
the desired emotion. With 20 target sentences spanning four
emotional states (happiness, sadness, anger, and neutrality), 80
unique scenarios were produced. This segment of the corpus
has 652 speech instances. Additionally, the corpus includes
all other interactions leading up to the target utterance (4,381
spontaneous speech turns) and natural interactions between the
actors during the breaks of the improvisations (2,785 natural
speech turns). It further consists of read renditions of the
target sentences in the four emotions (620 rehearsed speech
instances). In total, the MSP-IMPROV corpus comprises 7,818
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spontaneous speech instances and 620 read phrases. The anno-
tation was conducted through a crowdsourcing protocol, which
meticulously monitored worker quality in real-time, stopping
evaluations if their performance fell below a threshold [74].
A minimum of five workers annotated each sentence, and the
consensus labels were established based on the plurality rule.
In this research, we utilized four emotional categories from
this corpus: anger, sadness, happiness, and neutral state.

4) MSP-Face Corpus: The MSP-Face dataset [27] is an au-
diovisual emotional dataset, sourced in-the-wild from record-
ings obtained from video-sharing websites. This corpus en-
compasses recordings of 491 individuals who express their
opinions on various topics or share personal experiences.
The participants exhibit a broad spectrum of rich emotional
behaviors in their videos, contributing to the dataset’s di-
versity. In total, the MSP-Face dataset comprises 70.7 hours
of audiovisual data, split into 24.7 hours of labeled content
(with emotional labels) and 46 hours of unlabeled content.
For our framework’s pre-training, we utilize the MSP-Face
corpus, treating the entire dataset as an unlabeled set, without
employing the available labels.

F. Implementation Details

The stage 1 adaptive pre-training step involves tuning all
transformer layers of the original off-the-shelf SSL speech
model using our proposed multitask setup that incorporates all
three objectives. In this process, the audio 1D CNN encoder
layers of the speech models are kept frozen. Additionally,
we introduce a mean pooling layer at the output of the
last transformer layer. This layer is employed to obtain an
averaged representation from the transformer encoder layer,
which is then fed into three separate prediction heads, each
corresponding to one of the objectives. The model undergoes
training for 100 epochs, with a learning rate set at 1E-5, a
batch size of 32, and a λ value of 0.5 for the loss. The model
is trained using the Adam optimizer, and the most effective
model checkpoint is preserved based on performance evaluated
using a held-out test set that comprises 15% of the unlabeled
data utilized in the adaptive pre-training step. In stage 2, for
downstream fine-tuning, we modify the model architecture
by replacing the multitask prediction heads with a two-layer
fully connected prediction head. This alteration is specifically
tailored for SER, building upon the model obtained from stage
1. As in the previous stage, the CNN encoder layers of the
speech models remain frozen. The rest of the model is fine-
tuned for 20 epochs, with a learning rate set at 1E-5 and a
batch size of 32. During training, the model is optimized using
the Adam optimizer and cross-entropy loss as the objective
function. All implementations were carried out in PyTorch,
and training was performed on an NVIDIA Tesla V100.

IV. RESULTS

A. Baseline Models Description

The baseline models used for comparison throughout this
study, referred to explicitly as “Original” in the results tables,
are the off-the-shelf versions of SSL pre-trained speech mod-
els, including Wav2vec 2.0, WavLM, HuBERT, and Data2vec.

These models maintain their original architectures, comprising
a convolutional feature extractor (audio 1D convolutional
neural network (CNN) encoder layers) followed by multiple
transformer encoder layers. During fine-tuning for the SER
downstream task, following common SSL fine-tuning practice
[9], [10], [76], [77], we fix the convolutional feature encoder
and update only the Transformer and task heads. This strategy
preserves low-level acoustic invariances and improves stability
and computational efficiency on small labeled targets. Ad-
ditionally, a mean pooling layer is introduced at the output
of the last transformer layer to generate utterance-level rep-
resentations. Finally, we append a two-layer fully connected
head specifically for emotion classification. We also include a
purely speech-based baseline using the eGeMAPS handcrafted
acoustic features [20], which serves as a reference point for
unimodal SER performance without any pre-trained speech
model. This model is trained using the same downstream
classifier setup for fair comparisons.

B. Evaluation of Proposed Multimodal Adaptation Strategy

This section compares our proposed approach with the per-
formance of the off-the-shelf SSL base versions of Wav2vec
2.0 [8], WavLM [9], HuBERT [10], and Data2vec [11]. Table I
reports the average and standard deviation of the F1-score
performances across five trials on each dataset. To ensure
fair comparisons, all models are fine-tuned using the same
experimental setup, including training batches, hyperparam-
eters, and implementation details. This consistency isolates
the impact of the proposed adaptation strategy, allowing for a
direct assessment of its effectiveness. Additionally, we include
a handcrafted feature-based baseline (eGeMAPS) to provide a
conventional unimodal reference for SER.

In the CREMA-D dataset, all models showed improved
performance after adaptation and downstream fine-tuning, with
WavLM showing the most substantial improvement, from
0.675 ± 0.03 in the original to 0.724 ± 0.02 in the adapted
model. In the MSP-IMPROV dataset, adaptations led to no-
table improvements for all models, especially for Wav2vec
2.0 and WavLM. For Wav2vec 2.0, our approach results in
a notable increase from 0.501 ± 0.11 to 0.614 ± 0.04.
For WavLM, the performance gain is also strong, increasing
the F1-score from 0.555 ± 0.12 to 0.636 ± 0.05. In both
CREMA-D and MSP-IMPROV corpora, these results are also
substantially better than the eGeMAPS-based baseline, which
reaches an F1-score of 0.387 (CREMA-D) and 0.354 (MSP-
IMPROV), underscoring the benefit of using large pretrained
speech models for unimodal SER.

The results on the MSP-Podcast corpus did not exhibit the
same trends as in the other two databases. Table I shows that
there is even a performance decrease observed when using
WavLM with the proposed multimodal adaptation strategy.
We hypothesize that this outcome may be attributed to the
extensive size of the MSP-Podcast corpus. In comparison
to the MSP-IMPROV and CREMA-D databases, the size of
the MSP-Podcast corpus is about 1900% higher than each
of the other datasets. In such cases, pre-training might not
significantly expand the models’ capabilities. The inherent
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TABLE I
COMPARISON BETWEEN THE PROPOSED APPROACH (ADAPTED) AND THE ORIGINAL OFF-THE-SHELF VERSIONS OF THE SSL FINETUNED SPEECH

BASELINES (ORIGINAL), ALONG WITH A HANDCRAFTED FEATURE-BASED BASELINE (EGEMAPS). RESULTS ARE AVERAGED OVER FIVE TRIALS (±
STANDARD DEVIATION).

Dataset eGeMAPS Wav2vec 2.0 WavLM HuBERT Data2vec
Original Adapted Original Adapted Original Adapted Original Adapted

CREMA-D 0.387 ± 0.02 0.650 ± 0.04 0.681 ± 0.03 0.675 ± 0.03 0.724 ± 0.02 0.639 ± 0.01 0.704 ± 0.04 0.653 ± 0.03 0.672 ± 0.02
MSP-IMPROV 0.354 ± 0.04 0.501 ± 0.11 0.614 ± 0.04 0.555 ± 0.12 0.612 ± 0.05 0.538 ± 0.07 0.636 ± 0.04 0.533 ± 0.02 0.564 ± 0.04
MSP-Podcast 0.328 ± 0.02 0.614 ± 0.02 0.619 ± 0.02 0.632 ± 0.01 0.618 ± 0.02 0.618 ± 0.02 0.621 ± 0.01 0.642 ± 0.01 0.644 ± 0.03

diversity and complexity of the large corpus can well tune
the model to various emotional contexts on its own, which
may limit the additional benefits of pre-training. This result
suggests that pre-training with multimodal emotion-related
tasks might be more effective in low-resource scenarios with a
narrower emotional range and fewer data points available for
training. We explore this scenario in Section IV-C.

C. Results on Low Resource Subsets

As indicated in Table I, the results on the MSP-Podcast
corpus did not exhibit the performance gain observed with
the MSP-IMPROV and CREMA-D corpora. We hypothesize
that the pre-training of the models with multimodal unlabeled
objectives could be more beneficial in low-resource scenarios,
such as those observed in the CREMA-D and MSP-IMPROV
corpora. To investigate this hypothesis, we conduct additional
experiments on the MSP-Podcast corpus by restricting the
amount of training data to determine if the observed improve-
ments in performance persist under these conditions.

For our experiments, we create training subsets of the MSP-
Podcast corpus of different sizes, preserving the distribution
of the emotional classes in the subsets. This setting mimics
the original dataset content in a low-resource environment,
preserving the original full dataset’s emotional class distri-
bution. We create three subsets containing 1,000, 5,000, and
10,000 files, respectively. Moreover, we randomly re-sampled
each training subset five times and conducted experiments five
times for each model and setup.

1) Classification Results: Table II presents an evaluation
of the models trained with the three subsets created from the
MSP-Podcast corpus. The results clearly indicate that using
our approach leads to a performance gain over the original
model when the training set is limited. This trend suggests that
the proposed adaptation strategy is beneficial for this corpus as
well. Notably, the relative improvements in the adapted models
are higher in smaller subsets (1K and 5K). For instance,
the Wav2vec 2.0-based model improves the F1-score from
0.569 to 0.577 in the 1K subset. The F1-score improvement
is from 0.589 to 0.610 in the 5K subset. These results support
the hypothesis that pre-training with multimodal unlabeled
objectives is particularly beneficial in low-resource scenarios.
We also observe that the improvements vary among the
different models, hinting at the varying sensitivities of these
models to the adaptation process. HuBERT and Data2vec, for
example, show significant performance boosts when adapted,
especially with the smallest dataset, which might imply their
greater efficacy in capitalizing on the adaptation process under
resource constraints.

Fig. 3. Plot showing the average cosine distance obtained from comparing
the last transformer layer’s embeddings of each resulting model obtained from
using each subset derived from MSP-Podcast 1.11 against their respective
downstream fine-tuning starting points (original or adapted)

The low standard deviation values reported in Table II
indicate that the performance enhancements are robust and
repeatable across different randomized re-samplings of the
training data. In essence, the experiments reinforce the utility
of adapting pre-trained models for SER tasks, demonstrating
that such adaptations can yield performance benefits in low-
resource environments and pointing towards a promising di-
rection for future research in the field of emotion recognition
with limited labeled data.

2) Embeddings Distance Analysis: In this section, we ana-
lyze the average cosine distances of models obtained using
subsets ranging from 1K to 10K training samples derived
from the MSP-Podcast dataset. We compare each subset
setup in both scenarios: fine-tuning directly from the original
model and fine-tuning after the adaptation step. Through
this experiment, we aim to measure the divergence of the
transformer models’ last-layer embeddings with respect to
those of the original and adapted models under the limited
resource setup. We seek to understand the extent to which
the fine-tuned models have moved away from their initial
configuration following the fine-tuning process. The analysis
of embedding distance reveals insightful patterns about the
fine-tuning process of SER models using the MSP-Podcast
dataset.

Figure 3 shows the results. As the training subset size
increases from 1K to 10K, the embedding distance to the
original model correspondingly decreases. We note that the
primary goal of this analysis is not to evaluate the absolute
magnitude of the cosine distances across subset sizes, but
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TABLE II
COMPARISON BETWEEN THE PROPOSED APPROACH (ADAPTED) AND THE ORIGINAL OFF-THE-SHELF VERSIONS OF THE SSL FINETUNED SPEECH
BASELINES (ORIGINAL). THE TABLE REPORTS THE AVERAGE PERFORMANCE METRICS ACROSS FIVE TRIALS AND ITS STANDARD DEVIATION OF

MSP-PODCAST 1.11 SUBSETS.

Wav2vec 2.0 WavLM HuBERT Data2vec
Original Adapted Original Adapted Original Adapted Original Adapted

1K Subset .569 ± .02 .577 ± .03 .572 ± .01 .591 ± .01 .544 ± .03 .563 ± .02 .480 ± .05 .569 ± .01
5K Subset .589 ± .01 .610 ± .01 .604 ± .01 .616 ± .01 .586 ± .02 .602 ± .01 .563 ± .01 .598 ± .01
10K Subset .588 ± .02 .612 ± .01 .611 ± .01 .611 ± .01 .614 ± .01 .616 ± .01 .592 ± .01 .607 ± .01

TABLE III
MACRO-F1 ( ± STD.) FOR THE AUDIO-ONLY AV-HUBERT BASELINE

VERSUS THE BEST ADAPTED SSL MODEL ON EACH CORPUS.

Dataset AV -HuBERT Best Adapted SSL
CREMA-D 0.645 ± 0.027 0.724 (WavLM)
MSP-IMPROV 0.452 ± 0.068 0.636 (HuBERT)
MSP-Podcast 0.507 ± 0.032 0.644 (Data2vec)

rather to compare the relative representational shifts between
the original and adapted models within each subset condition
(1K, 5K, 10K, Full). This trend indicates that with the addition
of more training data, the fine-tuned models start to rely less
on the adaptation step. The distance to the model adapted for
emotion recognition is lower across all data subsets compared
to that to the original model, which aligns with expectations
since the adapted model was specifically tailored for SER
tasks. This consistent pattern supports the hypothesis that
adaptation provides a strong initialization for emotion-relevant
representations, especially when labeled data is scarce. No-
tably, there is an initial decrease in distance as we move from
the 1K to the 5K subset, followed by a slight increase from
the 10K subset to the full training set in the database. The
increase in distance from the 10K subset to the full training
set might suggest a point of diminishing returns from using
the adaptation step, where enough data is available to fully
fine-tune the transformer layers of the SSL representations.

D. Comparison with AV-HuBERT

We evaluate AV-HuBERT [78] to examine whether a re-
purposed multimodal model can rival our adaptation strategy
when restricted to speech-only inference. AV-HuBERT is an
audio-visual model originally designed for lip reading. For
the experiment, we retain only the audio branch; the visual
front-end and fusion layers were disabled so that training
and inference remain strictly unimodal, matching our problem
formulation which is audio-only at inference. We fine-tune the
model following exactly the same procedure used for the SSL
baselines in Section IV-B.

Table III reports macro-F1 results averaged over five runs.
We observe across all corpora that the audio-only AV-HuBERT
baseline lags behind the best adapted SSL model by 6% to
18% (absolute). We believe this performance gap is due in part
to the fact that the AV-HuBERT’s architecture and pre-training
are optimized for phonetic-level representations used in visual
speech recognition. Our models, in contrast, focus on pre-
trained tasks that are relevant for paralinguistic information,
specifically emotion, leading to clear improvements.

TABLE IV
F1 BIAS BEFORE AND AFTER ADAPTATION FOR THE HUBERT MODEL

AND COMPARISON WITH AV-HUBERT. LOWER VALUES INDICATE LESS
CLASS-LEVEL BIAS.

Dataset Original Adapted AV-HuBERT
CREMA-D 0.1864 0.1319 0.1892
MSP-IMPROV 0.1426 0.0647 0.1033

E. Bias Analysis from Tasks

To examine whether the use of pre-text tasks from models
(RoBERTa for text and EfficientNet-B2 for visual features)
introduces performance bias into our SER model, we analyze
the distribution of F1-scores across emotional classes. Specif-
ically, we use the F1 Bias metric to quantify how uniformly
the model performs across emotional categories. F1 Bias is
computed as the average absolute difference between all pairs
of per-class F1-scores. Formally, let Ag denote the F1-score
for emotion class g, and G is the number of classes. Then:

F1 Bias =
1

G(G− 1)

G∑
g=1

G∑
i=1
i ̸=g

|Ag −Ai|

A lower F1 Bias indicates more balanced performance
across classes and, hence, less bias. We perform this analysis
using the HuBERT model results. Table IV reports the F1 Bias
of the HuBERT model before and after applying the proposed
adaptation strategy on the CREMA-D and MSP-IMPROV
datasets. We observe a consistent reduction in F1 Bias follow-
ing adaptation, indicating that the additional supervision does
not inject bias into the model. Instead, it improves class-level
balance. These findings suggest that incorporating multimodal
emotion-relevant signals during pre-training improves both
overall performance and fairness across emotional classes.
Rather than introducing cascading errors or bias from the
pseudo-labeling models, the auxiliary supervision contributes
to more equitable model behavior across emotions.

To contextualize these findings further, we compared our
adapted HuBERT model against AV-HuBERT [78], a multi-
modal pre-trained model, which integrates visual and audio
information during pre-training. We selected HuBERT and
AV-HuBERT for this comparison because they share a sim-
ilar architecture and training origin, making them the most
appropriate point of reference. The results in Table IV show
that our adapted HuBERT model not only achieves lower
bias than the original SSL baseline but also exhibits less per-
class bias than AV-HuBERT, especially on the MSP-IMPROV
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TABLE V
CROSS-CORPUS MACRO-F1 ( ± STD.) WHEN MODELS ARE TRAINED ON
THE MSP-PODCAST CORPUS AND EVALUATED ON THE MSP-IMPROV

CORPUS.

Model (trained on MSP-Podcast) MSP-IMPROV F1
HuBERT Original 0.538 ± 0.048
HuBERT Adapted 0.558 ± 0.046

corpus. Importantly, our model maintains a purely speech-
based inference path, while AV-HuBERT is fundamentally
designed for audio-visual fusion tasks such as lip reading.
The observed bias reduction improvements suggest that our
adaptation strategy helps reduce bias while preserving general-
ization. These findings support our design choice and indicate
that our approach does not overfit to biases in the pre-training
data. Rather, it leads to improved performance balance across
emotion classes compared to both standard SSL and AV-based
models.

F. Cross-Corpus Generalization Ability
We conduct a cross-dataset experiment with the HuBERT

backbone to understand how well the emotion-adapted rep-
resentations transfer to an unseen domain. We use the MSP-
Podcast corpus as the source domain and the MSP-IMPROV
corpus as the target domain. Both the Original (SSL-only)
model and the Adapted model were fine-tuned on the full
MSP-Podcast corpus and then evaluated, without any addi-
tional training, on the MSP-IMPROV test set. The two corpora
share four categorical emotions (anger, happiness, sadness,
and neutral state), allowing a direct label match, but differ
markedly in recording style (naturalistic podcasts vs. scripted
studio dialogues), yielding a realistic domain-shift scenario.

Table V shows the results. The adapted model delivers an
absolute gain of roughly 2% macro-F1 gain (absolute) over
the SSL-only baseline, confirming that the emotion-centric
pre-training yields more transferable speech representations.
Although overall performance remains lower than the in-
corpus result obtained when training directly on the MSP-
IMPROV corpus (0.636 ± 0.04), the improvement under
zero-shot transfer indicates enhanced robustness to domain
shift. This result suggests that the proposed adaptation can
complement future domain-adaptation techniques [13], [79]–
[81], supporting scalability to real-world applications featuring
diverse recording conditions and label distributions.

V. ABLATION STUDIES

In this section, we present ablation experiments to explore
the multimodal objectives used in this study for emotion adap-
tation. We detail the preliminary experiments that informed the
selection of these objectives and ablations related to varying
the weights of objective losses in our proposed approach. The
experiments in this section are all conducted using the base
model of Wav2vec 2.0 [8] as the baseline and starting point
for adaptation. Additionally, we conduct all experiments using
the CREMA-D [25] and the MSP-IMPROV [26] corpora. We
use only one model and the two smaller corpora for these
experiments because it would not be feasible for us to run all
models and corpora for every experiment.

Fig. 4. Comparative Analysis of Model Performance Using Energy or
eGEMAPS as objectives for Emotion Adaptation in Wav2vec 2.0-base. This
figure illustrates the performance impact when using energy alone (resulting
in a significant decline) versus employing eGEMAPS (leading to a marked
improvement) for emotion adaptation, starting from the baseline of an original
off-the-shelf Wav2vec 2.0 model. The asterisk symbol above the bars indicates
that the model’s performance using eGEMAPS as the objective is statistically
significant compared to the other two explored formulations.

A. Pre-training the Models with Speech-Based Objective
We begin the analysis considering our preliminary study as

a starting point [19], which showed that we can improve SER
by integrating a speech energy-related task with facial activity-
related tasks as pre-training objectives. First, we consider the
speech energy-related task, which consists of the binary task
of predicting if the speech energy is higher or lower than the
median energy across sentences. We notice that using only this
objective results in a marked decrease in SER performance.
This decline occurs because classifying speech energy as high
or low is overly simplistic for a speech model, leading to a
shift in the model’s representation towards a space that fails
to adequately capture the nuances of emotional speech. To
address this problem, we revised our approach. Instead of
using a binary task to determine high/low energy, we now
employ regression objectives to estimate the average of the
eGEMAPS [20] features as the pre-training objectives (O1,
Sec. III-A). The eGEMAPS features have been extensively and
successfully utilized in various speech emotion recognition ap-
plications [82]. Therefore, we posit that using the eGEMAPS
feature set extracted from speech as the training objective,
instead of focusing solely on energy, will more effectively
capture emotion-related cues for our model.

Figure 4 presents the results of employing either the binary
energy-based task or the eGEMAPS regression task as the
objective for emotion adaptation, starting with an off-the-shelf
Wav2vec 2.0-base model (original). These results indicate that
using energy as the sole objective significantly deteriorates the
model’s performance. In contrast, when eGEMAPS is utilized,
there is a significant increase in performance compared to fine-
tuning directly from the original off-the-shelf Wav2vec 2.0
model.

B. Combining Speech and Text Based Objectives
Leveraging pre-trained language models for generating

pseudo labels has proven effective in enhancing speech sen-
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TABLE VI
SUMMARY OF MODEL PERFORMANCE WITH DIFFERENT WEIGHTINGS OF

OBJECTIVES O1 AND O2. THIS TABLE DISPLAYS AVERAGE F1-SCORES
FROM FIVE RUNS WITH RANDOM INITIALIZATIONS, HIGHLIGHTING THE
IMPACT OF VARYING THE WEIGHTINGS OF O1 AND O2 LOSSES IN THE

ADAPTIVE PRE-TRAINING PIPELINE. THE TOP SECTION SHOWS RESULTS
WITH DIFFERENT BALANCES BETWEEN O1 AND O2, NOTING THAT A λ
VALUE OF .5 FOR O2 YIELDS OPTIMAL RESULTS. THE LOWER SECTION

PRESENTS OUTCOMES WHEN O3 IS INCORPORATED ALONGSIDE O1 AND
O2, DEMONSTRATING THE NECESSITY OF A BALANCED APPROACH DUE

TO THE DIFFERING LOSS FUNCTIONS OF MSE FOR O1 AND O3, AND
CROSS-ENTROPY FOR O2. THE ASTERISK SYMBOL (*) INDICATES THAT
THE RESULTS ARE STATISTICALLY SIGNIFICANT. IN THE TOP SECTION,

THE EVALUATION IS COMPUTED AGAINST THE PERFORMANCE OF THE O1
MODEL, WHILE IN THE LOWER SECTION, IT IS COMPUTED AGAINST THE

PERFORMANCE OF THE BEST COMBINATION OBTAINED FROM
INCORPORATING THE O1 AND O2 OBJECTIVES WITHOUT ANY

ADDITIONAL OBJECTIVES.

Adding Textual Objective
Weighting CREMA-D MSP-IMPROV
O1 0.662 0.566
O1+O2 0.684* 0.608*
O1+.5*O2 0.686* 0.607*
O1+10*O2 0.668 0.582
10*O1+O2 0.673* 0.556
.5*O1+O2 0.668 0.565

Adding Facial Objective
Weighting CREMA-D MSP-IMPROV
O1+O2+O3 0.679 0.613*
O1+.5*O2+O3 0.681 0.614*
O1+1.5*O2+O3 0.674 0.580

timent analysis, particularly in semi-supervised training sce-
narios [18]. This study investigates the integration of pseudo
labels, derived from a pre-trained language model [22], as an
additional objective in adaptive pre-training (O2, Sec. III-B),
in conjunction with eGEMAPS features.

Table VI reports results obtained from including O2 (text) in
the adaptive pre-training pipeline of the model, using different
weights for the total loss. The results are reported as average
F1-scores of 5 randomly initialized runs. We can see through
different weightings of the O1 and O2 losses that a more
balanced weighting of the losses or weighting O2 with a λ =
.5 yields the best results for the proposed approach. The table
also shows that adding O2 leads to substantial performance
improvements over a model only pre-trained with O1.

C. Combining Speech, Text and Face based Objectives

Studies have also explored using visual inputs to improve
speech representations [19], [64]. While these studies demon-
strate the effectiveness of visual inputs in enhancing speech
representations for emotion recognition, the integration of
speech with both text and visual cues remains unexplored.
This study explores adding a visual-based objective (O3,
Sec. III-C), focusing on utilizing representations from a pre-
trained EfficientNet-B2 model [21], which has been trained to
recognize facial emotion expressions in the AffectNet corpus
[71]. With O3 (visual), we leverage a system that has already
mastered identifying and interpreting a wide range of facial
expressions. Our goal is to encourage our model to concentrate
on aspects of speech that closely align with visible emotional

expressions. This approach could potentially lead to a model
that is more finely attuned to the nuances of emotional speech.
The objective tasks O1 (speech) and O3 (visual) employ
the mean-squared error (MSE) for optimization, sharing a
common loss function. In contrast, O2 uses the cross-entropy
loss. This discrepancy requires a balanced approach among
O1, O2, and O3, given their differing error scales and loss
functions. For O2, we adjust the λ weight in relation to
the other objectives. This adjustment is crucial since cross-
entropy’s error characteristics and loss function scale differ
significantly from MSE. To address these variations, we strate-
gically modify the λ weight for O2 relative to O1 and O3.
This ensures the training process appropriately emphasizes the
classification task of O2 while maintaining equilibrium with
the regression tasks of O1 and O3.

The lower section of Table VI presents the results obtained
by incorporating O3 alongside O1 and O2. We see from Table
VI that keeping λ = .5 leads to the best balance in perfor-
mance for the CREMA-D and MSP-IMPROV corpora with
statistically significant improvements over the other setups.
Additionally, looking at Figure 5, we see the overall progres-
sion in performance from the original model to utilizing our
proposed adaptive step as we added more objectives into the
training process. Note that although there is a small drop in
performance for the CREMA-D corpus when we added O3 to
the adaptive training, we see a larger gain in performance for
the MSP-IMPROV corpus using O3.

VI. CONCLUSIONS

This study explored the use of mixed objectives generated
from unlabeled data from speech, text, and facial expressions
to improve speech emotion recognition systems. We found
that combining these different types of objectives is useful in
helping the speech representation to be more emotionally dis-
criminative, especially when the training data is limited. Our
approach uses pre-trained speech models that are further pre-
trained with the proposed strategy using information from all
three modalities. This approach helps the speech representation

Fig. 5. Evolution of Model Performance through the Addition of Objectives
in the Adaptive Training Process. This figure tracks the progression in
performance of the model, starting from the original version and moving
through various stages of incorporating additional objectives (O1, O2, and
O3) into the proposed approach.
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to learn emotional cues by leveraging the multimodal relation-
ships observed in the externalization of emotions conveyed
across acoustic, facial, and lexical features. We evaluated this
strategy on three datasets, observing clear improvements in
SER performance, particularly when there is not much labeled
data. The evaluation also explored ablation studies considering
subsets of the proposed multimodal pre-training objectives.
Our results show that including all explored types of informa-
tion makes our models better at identifying emotions.

This paper provides an effective strategy to improve an
SER model by using a variety of unlabeled data. By tapping
into the rich, complementary information provided by speech,
text, and visual data, we can build more accurate and reliable
emotion recognition models, especially in situations where
labeled data is scarce. This work opens up new possibilities
for improving SER systems and highlights the importance of
using multimodal data in machine learning, even when the
final objective is to design a unimodal system (e.g., a speech
emotion recognition system). Future work includes extending
this multimodal pre-training strategy to other emotion tasks
(e.g., video emotion recognition) and/or exploring additional
modalities (e.g., physiological signals). We will also explore
perturbations of upstream text/ASR signals and usage of
different sentiment models in our ablations, evaluate multi-
task weighting strategies (uncertainty weighting, GradNorm)
during training, and evaluate broader multi-domain and cross-
lingual transfer methods.
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