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Abstract—Most current audio-visual emotion recognition mod-
els lack the flexibility needed for deployment in practical applica-
tions. We envision a multimodal system that works even when only
one modality is available and can be implemented interchangeably
for either predicting emotional attributes or recognizing categori-
cal emotions. Achieving such flexibility in a multimodal emotion
recognition system is difficult due to the inherent challenges in
accurately interpreting and integrating varied data sources. It is
also a challenge to robustly handle missing or partial information
while allowing direct switch between regression or classification
tasks. This study proposes a versatile audio-visual learning (VAVL)
framework for handling unimodal and multimodal systems for
emotion regression or emotion classification tasks. We implement
an audio-visual framework that can be trained even when audio
and visual paired data is not available for part of the training set
(i.e., audio only or only video is present). We achieve this effective
representation learning with audio-visual shared layers, residual
connections over shared layers, and a unimodal reconstruction
task. Our experimental results reveal that our architecture sig-
nificantly outperforms strong baselines on the CREMA-D, MSP-
IMPROV, and CMU-MOSEI corpora. Notably, VAVL attains a new
state-of-the-art performance in the emotional attribute prediction
task on the MSP-IMPROV corpus.

Index Terms—Audio-visual modeling, handling missing modali-
ties, multimodal emotion recognition, transformers, versatile
learning.

I. INTRODUCTION

E FFECTIVE human interactions often include the expres-
sion and perceptions of emotional cues conveyed across

multiple modalities to accurately comprehend and convey a mes-
sage. During human interactions, there are two modalities that
stand out as particularly significant: speech and facial expres-
sions. These modalities play a crucial role in facilitating commu-
nication, making it essential for emotion recognition systems to
incorporate speech-based cues [1] and facial expression-based
cues [2], [3]. These modalities are intrinsically connected [4],
proving complementary information [5]. Therefore, emotion
recognition systems can be more accurate if they incorporate
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audio-visual solutions [6], [7], [8], [9], mirroring the way hu-
mans interact in natural, real-world settings.

It is important to note that while humans primarily rely on
these two modalities to recognize emotional states, there are
scenarios in which only one modality may be utilized. In some
cases, visual cues might be unavailable or occluded, leaving
individuals to rely solely on acoustic information. Conversely,
there might be situations where acoustic cues are insufficient or
absent, requiring the exclusive use of visual cues for effective
communication. As a result, it is vital for human computer inter-
action (HCI) systems to not only be capable of simultaneously
handling both modalities, but also to adapt to unimodal situa-
tions. The straightforward approach is to have separate unimodal
and multimodal solutions. However, it is more computationally
effective to have versatile systems that can be adapted according
to the available information. This flexibility ensures that HCI
systems can accommodate a wide range of communication
contexts and maintain their effectiveness in various real-world
conditions.

Artificial intelligent (AI) methods have been explored for
audio-visual learning to achieve high performance in either
multimodal or unimodal scenarios [10], [11], [12]. Most con-
ventional models rely on building separate modality-specific
branches [13], [14], [15] or employing ensemble-like tech-
niques [16], which can lead to convoluted and complex archi-
tectures. With the introduction of transformer frameworks [17],
many solutions have been developed to avoid training with
modality-specific strategies. These models even implement for-
mulations that unify the cross-modality relationships [18], [19]
into a single, comprehensive model.

Despite significant recent advancements in the construction
of simpler multimodal models, there are still open research ques-
tions to be considered when constructing a unified multimodal
model. One of these challenges is that current methods tend to
solely focus on one type of machine learning (ML) task [20].
For example, they consider either classification or regression
problems, without considering the potential need for versatility
across different problem types. In emotion recognition, this
problem is especially important, since emotions can be alterna-
tively described with emotional attributes (e.g., arousal, valence,
dominance) and categorical emotions (e.g., anger, happiness,
sadness) [21].

Depending on the setting, therefore, it is important to have
a model that can be utilized for either regression (emo-
tional attributes) or classification (categorical emotions) settings
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without making major changes in the architecture. Moreover,
current methods often disregard the importance of maintaining
distinct representations for each modality to capture modality-
specific [22] features and characteristics within shared layers,
which could affect performance in unimodal settings [13]. By
failing to account for the unique characteristics of each modality,
the models may not optimally leverage the strengths of each
input type, ultimately limiting their effectiveness. Moreover,
the complexity of many existing models can be a drawback,
as it may lead to increased computational demands and reduced
interpretability [23], making it more challenging for researchers
and practitioners to analyze and adapt the models for various
applications.

Our main contribution in this study is the proposal of a
versatile audio-visual learning (VAVL) model, which unifies
multimodal and unimodal learning in a single framework that
can be used for emotion regression and classification tasks. Our
approach utilizes branches that separately process each modal-
ity. In addition, we introduce shared layers, residual connections
over shared layers, and a unimodal reconstruction task. The
shared layers encourage learning representations that reflect the
connections between the two modalities. The addition of the
auxiliary reconstruction task and unimodal residual connections
over the shared layers helps the model learn representations that
reflect the heterogeneity of the modalities. Collectively, these
components are added to our framework to help with the multi-
modal feature representation, which is a core challenge in multi-
modal learning [24]. We implement this audio-visual framework
so it can be trained even when audio and visual paired data is not
available for part of the data. The proposed approach is attractive
as it enables the training of multimodal systems using incom-
plete information from multimodal databases (e.g., audio-only
or visual-only information is available for some data points), as
well as unimodal databases. The proposed framework also has
the versatility to be used for either regression or classification
tasks without changing the architecture or training strategy.

We quantitatively evaluate and compare the performance
of our proposed model against strong baselines. The results
demonstrate that our architecture achieves significantly better
results on the CREMA-D [25], the CMU-MOSEI [22], and
the MSP-IMPROV [26] corpora compared to the baselines.
For example, VAVL achieves a new state-of-the-art result for
the emotional attribute prediction task on the MSP-IMPROV
corpus. Also, our architecture is able to sustain strong perfor-
mance in audio-only and video-only settings, compared to strong
unimodal baselines. Additionally, we conduct ablation studies
into our model to understand the effects of each component on
our model’s performance. These results show the benefits of our
proposed framework for audio-visual emotion recognition.

II. BACKGROUND

Emotion recognition has been widely explored using
speech [1], [27], [28], facial expressions [29], and multimodal
solutions [30], [31], [32], [33]. However, most of these models
have focused on solving either emotion classification tasks [33]
or emotional attribute prediction tasks [27]. Furthermore, these

studies are designed for either unimodal or multimodal solu-
tions. Although some recent studies [15] have proposed ap-
proaches for audio-visual emotion recognition that can handle
both tasks, they still rely on a single modality. There is a need
for solutions that can handle multiple modality settings. Recent
advancements in deep learning have resulted in the development
of unified frameworks that aim to move away from unimodal
implementations. This section focuses on relevant studies that
address similar problems investigated in this paper.

A. Formulations for Emotion Recognition

Although an individual’s cultural and ethnic background may
impact her/his manner of expression, studies have indicated that
certain basic emotions are very similar regardless of cultural
differences [34]. These basic emotions are described as: hap-
piness, sadness, surprise, fear, disgust, and anger. These basic
emotional states are often the most widely explored task in
emotion recognition, formulating the problem as a six-class
classification problem [35], [36]. In fact, many of the affective
corpora include all or a subset of these classes, including the
CREMA-D [25], AffectNet [37], and AFEW [38] databases.

An alternative way to describe emotions is to leverage the
continuous space of emotional attributes or sentiment analysis.
The emotional attributes approach identifies dimensions to de-
scribe expressive behaviors. The most common attributes are
arousal (calm versus active), valence (negative versus positive),
and dominance (weak versus strong) [39]. Several databases
have explored the emotional attribute or sentiment analysis
annotation of audio-visual stimuli, such as the IEMOCAP [40],
MSP-IMPROV [26], and CMU-MOSEI [22] corpora. Studies
have proposed algorithms to predict emotional attributes using
audio-visual stimuli [41], [42], [43], facial expression [44], and
speech [1], [45], [46].

B. Unified Multimodal Framework

Since the introduction of the transformer framework [17],
many studies have explored multimodal frameworks that can
still work even when only one modality is available [47]. Some
proposed architectures employ training schemes that involve
solely utilizing separate branches for different modalities, as
seen in Baevski et al. [48]. These approaches construct branches
containing unimodal information specific to each modality. In
contrast, other studies explore the use of shared layers that encap-
sulate cross-modal information from multiple modalities [49],
[50]. The aforementioned studies incorporate aspects that laid
the foundation for modeling a more unified framework, but
they still have some limitations. For example, common solu-
tions require independent modality training, assume that all the
modalities are available during inference, or fail to fully address
the heterogeneity present in a multimodal setting. Recent studies
have proposed audio-visual frameworks that can handle both
unimodal and multimodal settings [51], but they still rely on
having additional unimodal network branches. Gong et al. [19]
proposed a unified audio-visual framework for classification,
which incorporates some effective capabilities, such as inde-
pendently processing audio and video, and including shared
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audio-visual layers into the model. However, the model focused
only on a classification task.

C. Versatile Task Modeling

For audio-visual unified models [19] and audio-visual models
that have multiple modality branches and can handle unimodal
scenarios [12], the final multimodal prediction is often obtained
by averaging the outputs from different branches, receiving the
contributions from all the modalities. In emotion classification
tasks, the model output is a probability distribution over a
set of discrete categories. Averaging predictions from multiple
unimodal branches can help capture different aspects of the
data, leading to improved classification accuracy. However, this
approach may not be effective for emotion attribute regression
tasks, as regression involves predicting a continuous numerical
value rather than a discrete categorical emotion label. Therefore,
the average of the predictions from different unimodal branches
may not be appropriate. This is particularly true when consid-
ering the performance gap that often exists between speech and
visual models for predicting arousal, valence, and dominance,
as facial-only features are generally less effective than acoustic
features [11]. Simply averaging these two results could lead
to suboptimal outcomes. A potentially appealing alternative is
to use a weighted combination of the predictions [52], [53].
However, this approach also has its limitations, as the prediction
discrepancy may not be consistent across all data points. To
address this issue, our study proposes training an audio-visual
prediction layer, in addition to visual and acoustic prediction
layers, used when only data from one modality is available.
The audio-visual prediction layer is optimized only when both
modalities are available. This layer can automatically learn
appropriate weights to combine the modality representations
and fuse them to generate a single audio-visual prediction.
This approach works well for both emotion classification and
regression settings.

D. Relation to Prior Work

While the implementation of our approach is with transform-
ers, which have been used in the past in multimodal processing,
our proposed VAVL model represents a significant contribution
in comparison to previous works. The proposed architecture
with shared layers, residual connections, reconstruction auxil-
iary tasks and separate audiovisual prediction layers is novel,
where each of its components is carefully motivated to ad-
dress a fundamental challenge in multimodal machine learning.
We employ conformer layers [54] as our encoders, which are
transformer-based encoders augmented with convolutions. The
closest study to our framework is the work of Gong et al. [19],
which proposed a unified audio-visual model for classification.
Their framework involved the independent processing of au-
dio and video features, with shared transformer and classifi-
cation layers for both modalities. Prior to the shared trans-
former layers, they have modality-specific feature extractors and
optional modality-specific transformers for each modality. In
contrast, our framework employs conformer layers instead of
vanilla transformers. Moreover, we introduce three important

components to our framework. First, an audio-visual prediction
layer is utilized solely when audio-visual modalities are avail-
able during inference, enhancing prediction accuracy and model
versatility for both regression or classification tasks. Second, a
unimodal reconstruction task is implemented during training to
ensure that the shared layers capture the heterogeneity of the
modalities. Third, residual connections are incorporated over
the shared layers to ensure that the unimodal representations are
not forgotten in the shared layers. This strategy maintains high
performance even in unimodal settings. These novel additions
represent significant contributions to the field of audio-visual
emotion recognition. Additionally, our proposed model com-
prises approximately 86 million parameters. In comparison,
TLSTM has 485,000 parameters, SFAV has 642,000 parameters,
MulT has 749,000 parameters, and Auxformer has 1,226,000
parameters. While our model is more complex than these earlier
models, it offers a significant reduction in complexity compared
to the UAVM framework, which has 117 million parameters.
This comparison indicates a reduction in complexity of approx-
imately 26% relative to UAVM, highlighting the efficiency of
our model in handling sophisticated multi-modal tasks.

The proposed approach is significantly difference from
our previous work on audio-visual emotion recognition [12].
Goncalves and Busso [12] proposed a method that incorporates
two main components: the use of auxiliary unimodal networks
and the use of modality dropout during training. The auxiliary
networks ensure unimodal representations are separately em-
bedded and not lost during the training of shared spaces within
the cross-modal layers. The use of modality dropout enhances
the ability of the model to retain performance when parts of
the input data are missing. This model uses audiovisual paired
data for training and performs averaging of prediction heads
to obtain final predictions. In contrast, our approach utilizes
distinct branches for processing each modality and introduces
shared layers with residual connections, complemented by an
unimodal reconstruction task. These shared layers are pivotal
in facilitating the learning of representations that capture the
interplay between audio and visual modalities. The shared layers
take either visual or acoustic information, but not both, providing
rich information to leverage cross-modality information. Fur-
thermore, the incorporation of an auxiliary reconstruction task
alongside unimodal residual connections enhances the model’s
ability to understand the diverse characteristics inherent in each
modality. A key innovation of our approach lies in its ability to
effectively train with incomplete multimodal data, accommodat-
ing scenarios where only audio or visual information is available
for certain data points. This flexibility addresses a significant
challenge in multimodal learning and broadens the applicability
of our model, making it a substantial contribution to the field.
The approach allows us to use partial audio or visual information
from multimodal and unimodal databases.

In summary, in relation to previous works, the primary novelty
of our framework lies within the unique organization and training
methodology of its layers. Our approach strategically structures
its layers in a manner that optimizes their functionality and effi-
cacy for our specific application for audio-visual and unimodal
(visual or acoustic) emotion recognition.
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Fig. 1. Overview of our proposed versatile audio-visual learning (VAVL)
framework. The orange branches represent the visual information and are
parameterized by the weights θv . The green branches represent the acoustic
information and are parameterized by the weights θa. The purple modules are
the shared layers where both modalities flow through, which are parameterized
by the weights θs. Finally, the gray module is the audio-visual prediction layer,
which is parameterized by the weights θav .

III. PROPOSED APPROACH

Fig. 1 illustrates the architecture of the proposed approach,
which consists of four major components. Each of these compo-
nents is represented in the figure by the set of weights θv, θa, θs,
and θav. The orange branches represent parts of the model where
only visual information flows. This region is parameterized by
the weights θv, and includes the visual conformer encoder layers
that encode the visual input representations, the visual prediction
layer for visual-only predictions, and the MLP reconstruction
layers for the averaged visual input features. The green branches
represent parts of the model where only acoustic information
flows. This region is parameterized by the weights θa, and
consists of the acoustic conformer encoder layers that encode
the acoustic input representations, the acoustic prediction layer
for acoustic-only predictions, and the MLP reconstruction layers
for the averaged acoustic input features. The shared layers,
depicted in purple in Fig. 1, are parameterized by the weights
θs. This block processes both acoustic and visual inputs to learn
intermediate audio-visual representations from both modalities.
It also contains residual connections from the unimodal branches
to the shared layers to preserve information from the unimodal
representations. Lastly, the audio-visual prediction layer is pa-
rameterized by the weights θav , which focuses on processing
audio-visual representations from the shared layers when the
model receives paired audio-visual data for training or inference.
The following sections describe these components in detail.

A. Acoustic and Visual Layers

As shown in Fig. 1, the acoustic and visual layers mirror each
other. Both layers share the same basic structure and training

mechanism. The main components of these layers are conformer
encoders [54], which process all the sequential video or acoustic
frames in parallel, depending on the modality available during
either training or inference. To obtain inputs for our model,
we utilize pre-trained feature extractors that produce a 1,408D
feature vector for each visual frame and a 1,024D feature vector
for each acoustic frame. Section IV-B describes these feature ex-
tractor modules in detail. We apply a 1D temporal convolutional
layer at the frame level before entering the feature vectors to their
corresponding conformer encoder layers. This step ensures that
each element in the input sequences is aware of its neighboring
elements. This approach also allows us to project both feature
vectors into a 50D feature representation, matching their di-
mensions. The dimensionality of the projection was determined
based on preliminary experiments. These experiments indicated
that a 50D representation strikes an effective balance: it retains
essential information from the original feature vectors while
keeping the model’s complexity manageable.

As seen in the top region of Fig. 1, there are two addi-
tional components separately implemented for each modality
(acoustic and visual) that are implemented to (1) predict the
emotional attributes, and (2) reconstruct the unimodal feature
representations. For the prediction of the emotional attributes,
the acoustic and visual layers contain a set of prediction layers,
referred to as visual prediction and acoustic prediction in Fig. 1.
They are responsible for generating unimodal predictions, which
are utilized when our model operates in a unimodal setting.
For the reconstruction of the unimodal feature representation,
the model has a multilayer perceptron (MLP) head that serves
as an auxiliary reconstruction task. The reconstruction task is
used to have the model reconstruct the average-pooled input
representations for the modality being used during training at
that moment. The input of the reconstruction is the average-
pooled representations obtained at the output of the shared layers
(Section III-B). Equation 1 shows the total loss function of the
model,

L = Lpred(y, pred) + αLMSE (xpool, RecM ) , (1)

whereLpred is the emotion task-specific loss (i.e., cross-entropy
– (2), or concordance correlation coefficient (CCC) – (3)), y is
the input label, pred is the emotional prediction of the model,
α is the scaling weight for the reconstruction loss, LMSE is
mean squared error (MSE) loss between the average-pooled
input value xpool and the reconstructed inputRecM for modality
M . The terms xpool and RecM are specific to each modality;
xpool represents the pooled features of the input (audio or
video), while RecM represents the reconstructed features for
the corresponding modality. This differentiation ensures that the
reconstruction loss appropriately guides the model to retain and
reconstruct modality-specific information.

The reconstruction task is included in our model to promote
the learning of more general features that can be applied to
both modalities while preserving separate information for each
modality, as the reconstruction from the shared layers requires
the model to retain information from both modalities.
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B. Shared Layers

The shared layers, depicted in purple in Fig. 1, mainly com-
prise a conformer encoder, following a similar structure to the
acoustic and visual layers. These shared layers are modality-
agnostic, meaning that during training and inference, the features
from both modalities will pass through these layers whenever
each modality is available. The purpose of this block is to ensure
that the shared layers maintain information from both modalities
incorporated in our model.

We also introduce a residual connection over the shared layers
(gray arrow in model θs shown in Fig. 1). This residual connec-
tion from the unimodal branches over the shared layers ensures
that the model retains unimodal separable information. This
mechanism complements the reconstruction tasks mentioned in
Section III-A to increase the robustness of the system when only
one modality is available. The approach allows the gradients to
flow directly from the shared layers to the unimodal branches,
preserving modality-specific information in our model.

C. Audio-Visual Prediction Layer

When only one modality is available, the system will use
the visual or acoustic prediction blocks. When both modalities
are available for training or inference, we use the audio-visual
prediction layer, highlighted in gray in Fig. 1. This layer plays a
crucial role in making our approach versatile. Unlike other meth-
ods that rely on averaging predictions from different branches in
their models, the audio-visual layers effectively utilize the con-
tributions of acoustic and visual inputs in the audio-visual space.
The audio-visual prediction layer consists of two fully connected
layers that feed into a final audio-visual prediction head. We
added this simple structure to ensure that representations from
both modalities, obtained from the average-pooled output of
each modality from the shared layers, are properly combined
to obtain a final audio-visual prediction. During training, when
audio-visual data is available, all other layers of the model are
frozen after updating with acoustic and visual data. Only this
layer is separately optimized to learn the required weights for
audio-visual predictions. This layer ensures proper combination
of audio-visual representations for robust predictions in both
classification or regression settings.

D. Versatile Model Training

We train our proposed VAVL model using Algorithm 1. The
training process can involve either a single modality or both
modalities at any given iteration. If both modalities are available,
the model first backpropagates the errors using the acoustic
predictions to optimize the acoustic and shared weights (θa, θs).
Then, it backpropagates the errors using the visual predictions
to optimize the visual and shared weights (θv, θs). Next, it
freezes all the parameters of the models other than the audio-
visual prediction block (i.e., θv , θa, and θs are frozen). Then, it
backpropagates the errors using the audio-visual predictions to
optimize the audio-visual prediction weights (θav). This method
facilitates the use of unpaired and paired audio-visual data for
training. If only one modality is available, we only update either

Algorithm 1: - VAVL (Training and Inference).

Require: D = {A, V, Label}, M = {θa, θv, θs, θav}

Training(D,M, α)

1: while i < max train iterations do
2: sample a batch of {Ai, Vi, Labeli}
3: if Ai �= None then
4: Preda, Ai−pool, Reca = M{ θa,θs}(Ai)
5: L = Lpred(Labeli, P reda) + αLMSE

(Ai−pool, Reca)
6: backpropagate and update {θa, θs}
7: if Vi �= None then
8: Predv, Vi−pool, Recv = M{ θv,θs}(Vi)
9: L =

Lpred(Labeli, P redv) + αLMSE(Vi−pool, Recv)
10: backpropagate and update {θv, θs}
11: if Ai �= None and Vi �= None then
12: freeze {θa, θv, θs}
13: Predav = M{θa,θv,θs,θav}(Ai, Vi)
14: L = Lpred(Labeli, P redav)
15: backpropagate and update {θav}
16: return M

Inference ({A, V },M)

17: if A �= None and V �= None then
18: Pred = M{θa,θv,θs,θav}(A, V )
19: else if one modality is not available then
20: Pred = M{ θa,θs}(A) when V == None
21: Pred = M{ θv,θs}(V ) when A == None
22: return Pred

the visual and shared weights (θv, θs) or acoustic and shared
weights (θa, θs). Essentially, most of the blocks in the proposed
architecture are trained with either acoustic features or visual
features. The only block that requires paired data is the audio-
visual prediction layer. The shared conformer layer processes
each modality separately when full audiovisual information is
available, so the dimension of the input to this block has always
consistent dimension. The outputs are then combined in the
audio-visual prediction layer.

At inference time, the model utilizes the available information
to make predictions, and in cases where both modalities are
present, the model outputs the predictions from the audio-visual
prediction layer. When only one modality is available during in-
ference, the model outputs the prediction from the corresponding
visual or acoustic prediction blocks.

E. Complexity Analysis

An analysis of the complexity of the VAVL method reveals
a framework with 86 M trainable parameters, underscoring its
capacity for handling complex multi-modal tasks. Central to
the framework, we have the acoustic and visual conformers,
each equipped with 34 M parameters, adeptly processing audio
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and visual inputs. The shared conformer, integral to the model’s
functionality, contains 15 M parameters, facilitating seamless
integration of different modalities. A crucial aspect of our model
is the 1D temporal convolutional layers, containing 650 k param-
eters. These blocks are important in projecting both visual and
acoustic features into a representation with the same dimension.
Additionally, the model features three specialized prediction
heads for acoustic, audio-visual, and visual processing, each
with 390 K parameters, further enhancing its processing capa-
bilities. Lastly, the reconstruction MLP layers contain a com-
bined total of 1.4 million parameters. To evaluate the practical
efficiency, we measured the inference latency and real-time
factor (RTF) on a 3090 RTX GPU. The results are as follows:
audio-only mode had an average latency of 0.003499 seconds
(RTF: 0.000005), video-only mode had an average latency of
0.001759 seconds (RTF: 0.000003), and audiovisual mode had
an average latency of 0.003770 seconds (RTF: 0.000006).

IV. EXPERIMENTAL SETTINGS

A. Emotional Corpora

In this study, we use the CREMA-D [25], the MSP-
IMPROV [26], and the CMU-MOSEI [22] corpora. The
CREMA-D corpus is an audio-visual corpus with high-quality
recordings from 91 ethically and racially diverse actors (48 male,
43 female). Actors were asked to convey specific emotions while
reciting sentences. Videos were recorded against a green screen
background, with two directors overseeing the data collection.
One director worked with 51 actors, while the other worked
with 40 actors. Emotional labels were assigned by at least seven
annotators. In total, 7,442 clips were collected and rated by 2,443
raters. We use the perceived emotions from the audio-visual
modality in the CREMA-D corpus for our classification task. We
consider six emotional classes: anger, disgust, fear, happiness,
sadness, and neutral state.

The MSP-IMPROV corpus [26] is the second audio-visual
database used in this study. The corpus was collected to study
emotion perception. The corpus required sentences with iden-
tical lexical content but conveying different emotions. Instead
of actors reading sentences, a sophisticated protocol elicited
spontaneous target sentence renditions. The corpus includes
20 target sentences with four emotional states, resulting in 80
scenarios and 652 speaking turns. It also contains the interactions
that prompted the target sentence (4,381 spontaneous speaking
turns), natural interactions during breaks between the recording
of dyadic scenarios (2,785 natural speaking turns), and read
recordings expressing the target emotional classes (620 read
speaking turns). In total, the MSP-IMPROV corpus contains
7,818 non-read speaking turns and 620 read sentences. The
corpus was annotated using a crowdsourcing protocol, monitor-
ing the quality of the workers in real-time. Each sentence was
annotated for arousal (calm versus active), valence (negative
versus positive), and dominance (weak versus strong) by five
or more raters using a five-point Likert scale. We employ these
three emotional attributes for our regression task.

The CMU-MOSEI [22] comprises review video clips of
movies sourced from YouTube. Each clip is annotated by human

experts with a sentiment score ranging from -3 to 3. We retrieved
the data from the author’s SDK and obtained a total of 22,859
files of which, based on their standard splits, 16,326 are used
for training, 1,871 are used for development, and 4,659 are used
for testing. This database consists of in-the-wild audio-visual
recordings.

B. Acoustic and Visual Features

For the CREMA-D and MSP-IMPROV corpora, we have
access to the raw videos and audio recordings, so we can extract
audio and visual features. Our acoustic feature extractor is based
on the “wav2vec2-large-robust” architecture [55], which has
shown superior emotion recognition performance compared to
other variants of the Wav2vec2.0 model [56], as demonstrated
in the study by Wagner et al. [45]. The downstream head of our
model consists of two fully connected layers with 1,024 nodes,
layer normalization, and rectified linear unit (ReLU) activation
function, followed by a linear output layer with three nodes for
predicting emotional attribute scores (arousal, dominance, and
valence). We import the pre-trained “wav2vec2-large-robust”
model from the Hugging Face library [57]. We use this wav2vec2
model specifically pre-trained for emotion recognition tasks
before its integration to ensure the representations used are
optimal for emotion recognition. We aggregate the output of
the transformer encoder using average pooling and feed them
to the downstream head. To regularize the model and prevent
overfitting, we utilize dropout with a rate of p = 0.5 applied to
all hidden layers. To fine-tune the model, we use the training set
of the MSP-Podcast corpus (release of v1.10) [58]. The ADAM
optimizer [59] is employed with a learning rate set to 0.0001.
We update the model with mini-batches of 32 utterances for 10
epochs. With the fine-tuned “wav2vec2-large-robust” model, we
extract acoustic representations with a 25 ms window size and
a 20 ms stride from the given audio, which are then used as the
acoustic features. This strategy creates 50 frames per second.

To obtain visual features, we used the multi-task cascaded
convolutional neural network (MTCNN) face detection algo-
rithm [60] to extract faces from each image frame in the corpora
using bounding boxes. Following the extraction of bounding
boxes, we resize the images to a predetermined dimension of
224× 224× 3. After face extraction, we utilize the pre-trained
EfficientNet-B2 model [29] to extract emotional feature rep-
resentations. At the time of our study, this model was among
the top performers on the AffectNet corpus [37]. Similarly
to the acoustic feature extractor, the EfficientNet-B2 model is
pre-trained for emotion recognition tasks before its integration.
This approach helps ensure the representations obtained from
videos are optimal for emotion recognition. The representation
obtained from the EfficientNet-B2 model is retrieved from the
last fully connected layer before classification, with an array
dimension of 1,408. This representation is then concatenated
row-wise with all other frames within each clip from the datasets,
serving as the input for the visual branch of our framework.

The CMU-MOSEI dataset offers pre-extracted features in-
stead of raw data. Specifically, for the visual modality, it provides
35 facial action units, while the audio data includes features such
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as Mel-frequency cepstral coefficients (MFCCs), pitch tracking,
glottal source, and peak slope parameters, totaling 74 features.
Consequently, we could not use the same set of features used
to conduct experiments on the CREMA-D and MSP-IMPROV
corpora (i.e., wav2vec2 and EfficientNet-B2 based features).
Instead, we use the features provided with the release, which also
facilitates the comparison with other methods using this corpus.

C. Implementation Details

We implemented the conformer blocks with an encoder hid-
den layer set to 512D, with 8 attention heads. We set a dropout
rate to p = 0.1. The number of layers in the acoustic, visual,
and shared conformer layers were set to three, three, and two,
respectively. The acoustic/visual prediction layers and the re-
construction layers are implemented using a fully-connected
structure with three layers. The first two layers are implemented
with 512 nodes and 256 nodes, respectively. For the acoustic and
visual prediction modules, the third layer is the output layer,
where the size depends on the emotion recognition task (i.e.,
classification or regression). For the reconstruction task, the third
layer is the target representation to be reconstructed, so it has
1,024 nodes for the acoustic features and 1,408 nodes for the
visual features. The fully connected layers are implemented with
dropout, with the rate set to p = 0.2. Similarly, the audio-visual
prediction layers have a mostly identical fully-connected hidden
layer structure to the unimodal prediction layers. The only differ-
ence is that the input layers are now 1,024D, as they need to take
both unimodal representations from the shared layers as inputs.
We trained the models for 20 epochs using the ADAM optimizer,
with the ReLU as the activation function. The learning rate is
set to 5e-5. We used a batch size of 32 for the CREMA-D and
CMU-MOSEI dataset experiments, and a batch size of 16 for the
MSP-IMPROV dataset experiments, since the MSP-IMPROV
has longer sentences. The model was implemented in PyTorch
and trained using an Nvidia Tesla V100.

The recordings in each database are divided into train, de-
velopment, and test sets, with approximately 70%, 15%, and
15% of the data in each set, respectively. The splits were carried
out in a speaker-independent manner, ensuring that no speaker
appeared in more than one set. We trained each model five times,
with different splits each time. All models were trained using the
train set, and the best-performing model on the development set
was selected and used to make predictions on the test set.

D. Cost Functions and Evaluation Metrics

Three of the most prominent tasks in affective computing are
classification tasks for categorical emotions, regression models
for emotional attributes, and sentiment analysis which can be ap-
proached as either a classification or a regression task, depending
on the specifics of the problem and the nature of the sentiment
scores. Our model is designed to be utilized and evaluated in
both formulations (i.e., classification or regression tasks).

For emotion classification, our training objective is based on
the multiclass cross-entropy loss, as seen in (2),

LCE = −
M∑

c=1

yo,c log(po,c), (2)

where M is number of classes, log is the natural log, c is the
correct label for observation o, and p is the predicted probability
that observation o belong to class c. We predict the emotional
state/value for each input sequence in our test set and report
the ‘micro’ and ‘macro’ F1-scores. The ‘micro’ F1-score is
computed by considering the total number of true positives,
false negatives, and false positives, making it sensitive to class
imbalance. The ‘macro’ F1-score calculates the F1-score for
each class separately and aggregated the scores with equal
weight, so the performance on the minority class is as important
as the performance in the majority class.

For emotional attributes regression models, we use the con-
cordance correlation coefficient (CCC), which measures the
agreement between the true and predicted emotional attribute
scores. Equation 3 illustrates the CCC measurements,

LCCC =
2ρσxσy

σ2
x + σ2

y + (μx − μy)2
, (3)

where μx and μy are the means of the true and predicted scores,
σx and σy are the standard deviation of the true and predicted
scores, and ρ is their Pearson’s correlation coefficient. We train
our model to maximize CCC so that the predicted scores have a
high correlation with the true scores, while reducing their errors
in the prediction. We use the CCC metric for model evaluation
of the predictions of arousal, valence, and dominance.

We formulate the prediction of sentiment analysis as the
prediction of a continuous number between -3 to 3. We employ
the mean absolute error (MAE) as the primary training objective.
This L1 loss function is defined as the average of the absolute
differences between the predicted sentiment scores and the true
sentiment scores. The L1 loss is formulated as shown in (4):

LL1 =
1

N

N∑

i=1

|yi − ŷi|, (4)

where N is the number of samples, yi is the true sentiment
score, and ŷi is the predicted sentiment score for the i-th sample.
The L1 loss is particularly suitable for sentiment analysis as it
robustly handles outliers and ensures a linear error penalization.
Our model aims to minimize this loss during training, thereby
reducing the average magnitude of errors in sentiment score
predictions. This loss function is instrumental in achieving high
accuracy in predicting the nuanced sentiment scores across the
specified range.

We conducted each experiment in this work five times with
different partitions or seeds and reported the average metrics.
Additionally, we performed statistical analyses to evaluate our
model’s performance against the baseline models. We used a
two-tailed t-test, asserting a significance level at p-value<0.05.

E. Baselines

To evaluate the performance of our proposed model, we con-
ducted experiments with three strong audio-visual frameworks
and one unimodal framework. Baseline models 1, 2, 3, and 4
were implemented utilizing the code available in their respective
repositories. For Baseline 5, the implementation was carried out
in accordance with the specifications outlined in its associated
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paper. Baseline 6 represents a unimodal variant of our model,
specifically crafted for comparisons in a unimodal setting.

1) Baseline 1: UAVM: Gong et al. [19] proposed a unified
audio-visual framework for classification, which independently
processes audio and video features. The framework includes a
shared transformer component and a classification layer, whose
weights are shared between the modalities.

2) Baseline 2: AuxFormer: Goncalves and Busso [51] pro-
posed an audio-visual transformer-based framework that creates
cross-modal representations through transformer layers, sharing
representations from query inputs from one modality to the keys
and values of another modality. Additionally, their architecture
includes unimodal auxiliary networks and modality dropout
during training to enhance the robustness to missing modalities,
allowing the model to be used in both audio-visual and unimodal
settings.

3) Baseline 3: MulT: Tsai et al. [61] proposed a multimodal
transformer architecture for human language time-series data.
Their model uses a cross-modal transformer framework that
generates pairs of bimodal representations, where the keys and
values of one modality interact with the queries of a target
modality. Vectors with similar target modalities are concatenated
and passed to another transformer layer that generates repre-
sentations used for prediction. The original model considered
textual, visual, and acoustic features. We adapt the model from
the original study by removing the dependencies on the textual
branch, focusing only on visual and acoustic features.

4) Baseline 4: SFAV: Chumachenko et al. [62] present an
architecture for audiovisual emotion recognition, particularly
addressing the challenge of incomplete data from either modality
during inference. Their model is designed to learn from both
audio and visual data and incorporates robust fusion mechanisms
that perform well even when one modality is absent. The authors
explore fusion techniques, such as late transformer fusion and
intermediate transformer fusion to more effectively integrate
features from the audio and visual branches. In this paper, we
refer to this baseline as SFAV in agreement with their methodol-
ogy approach which uses self-attention fusion for audio-visual
emotion recognition.

5) Baseline 5: TSLTM: Huang et al. [63] propose a multi-
modal transformer architecture for continuous emotion recog-
nition, leveraging the Transformer’s ability to model long-term
temporal dependencies with self-attention mechanisms. Their
model combines audio and visual modalities through model-
level fusion without an encoder-decoder structure. It employs
multi-head attention to learn emotional temporal dynamics and
fuses audio-visual modalities into a shared semantic space,
outperforming traditional fusion methods. Additionally, the ar-
chitecture integrates long short-term memory (LSTM) networks
to further improve performance. In our study, we refer to the
model as TLSTM consistent with their method of combining the
transformer model and LSTM for emotion recognition.

6) Baseline 6: Unimodal Acoustic and Visual Model: The
unimodal baseline model has a similar structure to the model
proposed in this study. Like the acoustic and visual layers of
our model, it uses conformer encoder layers [54] to process
all sequential video or acoustic frames in parallel. The output

of the conformer layers is then average-pooled and fed into a
network that contains two fully connected layers to generate the
prediction. We build the unimodal network with five conformer
layers to match the structure of the full VAVL network.

V. EXPERIMENTAL RESULTS

A. Comparison With Baselines

This section compares our proposed model with the audiovi-
sual and unimodal baselines explored in this study. All models
were trained using the details discussed in Section IV-C. Tables I
and II presents the average results for all the models across
the five trials on each corpus. The models’ performances are
evaluated based on three modalities: audio-visual, acoustic,
and visual. For the MSP-IMPROV dataset, the performance is
assessed using the CCC predictions for arousal (Aro.), valence
(Val.), and dominance (Dom.). For the CREMA-D dataset, we
report the F1-Macro (F1-Ma) and F1-Micro (F1-Mi) scores.
For the CMU-MOSEI dataset, we report Mean Absolute Error
(MAE). Upon examining the performance metrics presented in
the tables, the VAVL model demonstrates notable superiority
across various tasks when compared to the baseline models on
CREMA-D, MSP-IMPROV, and CMU-MOSEI datasets. This
superiority is quantified by the asterisks indicating statistical
significance.

In the audio-visual modality on the CREMA-D dataset, the
VAVL model achieves an F1-Macro score of 0.779±0.025,
which is significantly higher than that of the strongest baseline,
the TSLTM model, at 0.667±0.012. This pattern is consistent in
the F1-Micro score, where VAVL scores 0.826±0.015, outper-
forming the second-best SFAV model’s score of 0.810±0.010.

The VAVL model’s performance in acoustic modality is also
strong, with a MAE of 0.829±0.034 on the CMU-MOSEI
dataset, which is lower than the best-performing baseline model
(AuxFormer) with an MAE of 0.830±0.032. Lower MAE in-
dicates better performance, and these numbers underscore the
predictive accuracy of the VAVL model in capturing sentiment
changes. On the visual modality of the CMU-MOSEI dataset,
The MAE of the VAVL model is 0.795±0.028, which again
is the lowest error rate compared to the baselines. The closest
competitor is the MulT model with an MAE of 0.815±0.028,
indicating that VAVL is more precise in interpreting visual data
for sentiment analysis.

The MSP-IMPROV dataset further showcases the VAVL’s
robustness, particularly in the audio-visual category for arousal
(Aro.), with a score of 0.856±0.110, significantly surpassing the
UAVM model which has a score of 0.471±0.257. Similarly, in
dominance (Dom.), VAVL scores 0.814±0.095, while the next
best is the TSLTM model at 0.782±0.145. The results for the
audio-visual setting on the MSP-IMPROV corpus reinforce our
hypothesis that the use of averaging unimodal predictions, as
employed by some baselines, might not work well for regression
tasks. These metrics highlight the strong capability of the VAVL
framework in detecting the intensity and control aspects of
emotions conveyed through both audio and visual cues.

In summary, the VAVL model not only consistently outper-
forms the baseline models in terms of CCC and macro and
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TABLE I
COMPARISON BETWEEN THE VAVL MODEL AND THE AUDIO-VISUAL AND UNIMODAL BASELINES

TABLE II
COMPARISON BETWEEN THE VAVL MODEL AND THE AUDIO-VISUAL AND UNIMODAL BASELINES. THE TABLE REPORTS THE AVERAGE PERFORMANCE METRICS

ACROSS FIVE TRIALS

micro F1 scores, it also maintains lower MAE across datasets,
showcasing its superior ability to accurately recognize and pre-
dict emotions. The numerical superiority of the VAVL model
across various datasets which have been collected under diverse
scenarios emphasizes its potential for practical applications in
emotion recognition systems.

B. Random Masking of Features

This section evaluates the system’s performance in scenar-
ios with absent features, simulating missing data by randomly
zeroing out either visual or acoustic data at the frame level.
To analyze the system’s resilience to incomplete information,
we incrementally mask available frames from 0% to 90% in
10% increments. For instance, in the 30% condition, 30% of
the frames from the modality being masked are replaced with
zeros. This evaluation helps us understand the model’s per-
formance variations when audio-visual data is available but
partially incomplete. The rationale behind our approach of
simulating missing modalities by randomly dropping frames
at varying percentages is to closely mimic conditions where
input data might be incomplete or degraded due to practical
issues. In real-world scenarios, data loss can occur randomly
due to face occlusions, hardware intermittent malfunctions, or
other environmental factors. Randomly dropping frames aims
to replicate these unpredictable disruptions. We focus on the
MSP-IMPROV and CREMA-D corpora, which allow us to use
our entire framework–from processing raw inputs to predicting

Fig. 2. Performance of the proposed model under audio-visual settings on the
CREMA-D corpus with partial visual or acoustic information. The figure plots
the micro F1-scores as a function of the percentage of the frames included for
the masked modality (the other modality is assumed to be complete).

emotions - a process not possible with the CMU-MOSEI cor-
pus due to the absence of raw data. The MSP-IMPROV and
CREMA-D corpora provide consistency in frame-wise facial
feature extraction and synchronize acoustic feature extraction
timing, employing a 25 ms window size and a 20 ms stride for
both corpora.

Fig. 2(a) and (b) show the average results on the CREMA-
D corpus for masking audio and visual inputs, respectively,
obtained from the model’s audio-visual prediction heads. The
results indicate that removing either modality impacts the model.
With random audio masking, performance remains stable when
we mask up to 30% of the frames. The model reaches an F1
Macro score of approximately 0.72 when only 10% of the
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TABLE III
ABLATION ANALYSIS OF THE PROPOSED VAVL MODEL USING THE MSP-IMPROV AND CREMA-D CORPORA

Fig. 3. Performance of the proposed model under audio-visual settings on the
MSP-IMPROV corpus with partial visual or acoustic information. The figure
plots the CCC scores as a function of the percentage of the frames included for
the masked modality (the other modality is assumed to be complete).

audio frames are present. In contrast, visual masking results in a
sharper drop in performance when we mask 30% of the frames.
The approach has a low F1 Macro score of about 0.51 when only
10% of the video frames are present. This score is significantly
lower than those in Table I using only the acoustic head, implying
that the audio-visual head may get confused with zero-masked
frames. When the percentage of missing visual frames is higher
than 60-70%, it is better to rely solely on the acoustic modality.

Fig. 3(a) and (b) depict average results on the MSP-IMPROV
corpus for masking audio and visual inputs. The results from the
audio-visual prediction heads show that the performance with
random audio masking is steady up to 30%, then drops sharply,
reaching scores of about 0.4 CCC for valence, and 0.2 CCC for
arousal and dominance. This result suggests that the emotional
attribute models rely more on the acoustic modality to achieve
high performance. Masking the audio frames can lead to lower
performances than using only the visual head for prediction.
When we miss more than 60% of the acoustic features, it is
better to focus solely on visual features, using the results from
the visual head. Conversely, masking visual features results in
a smaller performance drop. Even when we mask 90% of the
visual features, we still achieve scores of 0.85 CCC for valence,
0.82 CCC for arousal, and 0.75 CCC for dominance. These
findings confirm that the model is more dependent on acoustic
features than visual features to predict emotional attributes.

C. Ablation Analysis of the VAVL Framework

Table III presents the results of an ablation analysis of the
VAVL model on the MSP-IMPROV and CREMA-D corpora,
comparing the performance of the full model with its ablated

versions. In these experiments, we focus on the on the MSP-
IMPROV and CREMA-D corpora, since with these corpora
we were able to use our entire framework from raw inputs to
emotion predictions, which was not possible with CMU-MOSEI
since raw datapoints are not provided. Three ablated models are
considered: Ablation 1 (Ablt. 1) removes the residual connec-
tions over the shared layers, Ablation 2 (Ablt. 2) removes the
reconstruction step from the framework, and Ablation 3 (Ablt.
3) removes the audio-visual prediction layer, using the average
of the unimodal predictions as the audio-visual prediction.

In the MSP-IMPROV dataset, the full VAVL model outper-
forms all the ablated versions in terms of arousal, valence,
and dominance for the audio-visual and visual modalities. In
the acoustic modality, VAVL shows the best performance for
arousal and valence. However, Ablation 2 and 3 slightly surpass
the VAVL results for dominance. These results indicate that
the residual connections, reconstruction step, and audio-visual
prediction layer all contribute to the strong performance of the
VAVL model.

On the CREMA-D dataset, VAVL consistently achieves the
highest F1-Macro and F1-Micro scores across multimodal and
unimodal settings, indicating that the full model is superior to its
ablated versions. Ablation 1 has the lowest performance in the
acoustic modality, while Ablations 2 and 3 show competitive
results in some cases, albeit not surpassing the results of the
full VAVL model. These results are consistent with the MSP-
IMPROV ablation results and suggest that the combination of all
components in the VAVL model leads to the best performance,
with each component playing a significant role in the overall
success of the model.

D. Shared Embedding Analysis

In this section, we perform analysis on the output embedding
representations for each modality at the output of the shared
layers from our VAVL model and the baselines. This experiment
is conducted to investigate whether the shared layers of a multi-
modal model are capable of producing different representations
for each modality. Using shared layers in a multimodal model
allows the architecture to learn a common representation across
different modalities, which can help in tasks that require integrat-
ing information from multiple sources. However, maintaining
distinct representations for each modality in a multimodal model
is crucial for several reasons. First, it allows the model to capture
modality-specific information, which is essential for optimal
performance. Second, it enhances interpretability by making it
easier to analyze each modality’s contribution to the final output
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Fig. 4. Comparison of average cosine distances between acoustic and visual
representations generated by shared layers of the VAVL, AuxFormer, and UAVM
models.

or decision. Lastly, distinct representations ensure the model’s
adaptability, enabling it to perform well even when some modal-
ities are missing or incomplete. To verify our proposed model’s
capability of generating distinct separable representations for
each modality from the shared layers, we obtain separate output
embeddings from the shared layers of the trained model using
either acoustic or visual information. Then, we calculate the
cosine distance between their respective embeddings. On the
one hand, a high cosine distance indicates that the embeddings
are more dissimilar, and thus capturing modality-specific infor-
mation. On the other hand, a low cosine distance implies that
the embeddings are more similar, potentially indicating that the
model is not effectively capturing the unique features of each
modality, and thus not effectively utilizing the multimodal input.

Fig. 4 presents a comparison of the average cosine distances
between acoustic and visual representations generated by the
shared layers of our proposed framework (VAVL). For com-
parison, we use the shared models from the AuxFormer archi-
tecture [51], which are implemented with cross-modal layers
(the same type of layers used in the MulT model [61]), and
from the UAVM model [19]. Based on the average cosine
distance values obtained, the VAVL shared layers is the most
effective model in generating distinct representations for the
acoustic and visual modalities. The cross-modal layers show
moderate effectiveness, while the UAVM shared layers seem to
struggle in separating the modalities. These results correlate with
our model’s superior overall performance in unimodal settings
compared to the baselines.

VI. CONCLUSION

This study introduced the VAVL model, a novel versatile
framework for audio-visual, audio-only, and video-only emotion
recognition. The proposed approach is built with shared layers,
residual connections over shared layers, and a unimodal recon-
struction task. It attains high emotion recognition performance
and can be trained even when paired audio and visual data is
unavailable for part of the recordings. Furthermore, the model
allows for direct application across both emotion regression and
classification tasks. In the MSP-IMPROV corpus, the VAVL
model consistently outperforms the CCC predictions of all
multimodal baselines across all emotional attributes, achieving

0.856, 0.876, and 0.814 for arousal, valence, and dominance in
audio-visual settings. Our results demonstrate that our method
is able to better leverage visual representations to improve
both unimodal and audio-visual performance, particularly in
the visual-only setting. In the CREMA-D corpus, VAVL consis-
tently surpasses baselines across all settings, achieving the high-
est F1-Macro (0.779) and F1-Micro (0.826) scores in the audio-
visual modality. Under more naturalistic environment with the
CMU-MOSEI corpus, we achieve better audio-visual and visual
MAE scores than the strong baselines explored for sentiment
score prediction. In addition to high performance on emotion
recognition tasks, we show through the experimental evaluation
our models’ capabilities on handling missing modalities at the
audio-visual setting and we also ran experiments to show that the
shared layers of the proposed architecture are able to better cap-
ture the distinct features contained in acoustic and visual inputs,
when compared to the shared layers of the baseline models.

While our training pipeline offers flexibility by accommodat-
ing both single and dual modalities, we acknowledge potential
limitations. Specifically, training can become unstable when
dealing with extremely highly imbalanced data from the two
modalities. To mitigate this problem, we employ careful batch
management and learning rate adjustments to ensure stability.
Additionally, the iterative freezing and unfreezing of weights
introduces some complexity to the training process, but these
steps are crucial for effective learning from both unpaired and
paired data.

Future work for this study is to utilize this framework on
other audio-visual tasks such as sound recognition [64], scene
classification [65], event localization [66], and audio-visual
speech recognition [67]. Furthermore, extension to this work
can include considering additional modalities, such as elec-
troencephalogram (EEG) [68]. Integrating EEG data with facial
expressions could provide complementary information, enrich-
ing multi-modal emotion analysis and opening new research
avenues. This approach is significantly less complex compared
to other methods, such as cross-modal learning [51], [61]. In
cross-modal learning, bimodal context representation vectors
are developed, and the introduction of each additional modality
requires the addition of M ∗ (M − 1) context layers to the
model, whereM represents the number of modalities. We expect
that our approach will be easier to computationally scale to
incorporate new modalities.
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