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Abstract—Emotion recognition is inherently a multimodal
problem. Humans use both audible and visual cues to determine
a person’s emotions. There has been extensive improvement in
the methods we use to fuse audio and visual representations
between two unimodal deep-learning models. However, there is
a lack of accommodation for modalities that have a disparity
in the amount of computational resources needed to provide
the same amount of temporal information. As the sequence
length increases, current methods often make simplifications
such as discarding frames or cropping the sequence. This paper
introduces a chunking methodology designed for cross-attention-
based multimodal transformer architectures. The approach in-
volves segmenting the visual input—the more computationally
demanding modality—into chunks. Cross-attention is then per-
formed between the encoded audio and visual features instead
of the original sequence lengths of the unimodal backbones.
Our method achieves significant improvements over conventional
cross-attention techniques in the audio-visual domain for a six-
class emotional recognition problem, demonstrating better F1
score, precision, and recall on the CREMA-D database while
reducing computational overhead.

Index Terms—multimodal learning, audio-visual emotion
recognition, deep learning

I. INTRODUCTION

Emotion plays a crucial role in human communication.
It shapes how we interact, make decisions, and form social
connections. Human communication is intrinsically multi-
modal, relying on a combination of verbal and visual cues.
Consequently, developing multimodal models is vital to pro-
viding a more complete and refined understanding of human
communication.

Multimodal learning enables deep learning models to
achieve a more robust and nuanced understanding of data
by integrating information from multiple sources. This allows
the model to capture relationships that unimodal models
miss. Recently, studies have commonly used a cross-attention
mechanism to fuse the features of two modalities over different
sequence lengths [1]-[3]. However, this can be an issue
when the modalities’ model architectures may dictate different
sequence sizes even after temporally aligning the samples.
Furthermore, the vast difference between the sampling rates
of two modalities, such as acoustic and visual data, inherently
leads to a mismatch between the models.

The difference in sequence lengths in multimodal systems
can limit the temporal information one modality can provide.
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For instance, video encoders have to be able to provide spatial
information for every sample, not just temporal information
like with audio, thus making computation costly [4], [5]. We
can reduce the number of frames sampled throughout time
to alleviate the computational cost (e.g., sampling frames or
cropping the sequence length). However, this approach limits
the temporal information available to the model. As a result,
when fusing the audio and visual modalities using techniques
such as cross-attention, the cross-attention mechanism can
be hindered due to the visual encoder’s reduced temporal
information.

This paper proposes chunking the inputs of the more compu-
tationally intensive modality, the visual modality in this case,
to both reduce computational costs and prevent the need to
reduce temporal information provided by the modality. This
approach enables cross-attention to be performed over a pre-
defined number of chunks, reducing the model’s complexity.
Thus, the strategy allows for the fusion of the modalities
without only relying on the sequence lengths dictated by the
unimodal backbones.

Our proposed method achieved statistically significant im-
provements over conventional cross-attention techniques at a
lower computational cost in a six-class emotion recognition
task using the CREMA-D database [6]. Comparing our best-
performing chunking method with our baselines, we observe
an average of over 4% improvement in micro and macro F1
score, macro precision, and macro recall. We also observed
over 58% reduction in required GPU memory and around 38%
reduction in training time. We investigated different chunking
strategies to identify critical factors influencing performance,
such as chunk gap and overlap. We find that avoiding exces-
sive overlap between the chunks is essential. While previous
multimodal frameworks have used cross-attention, our key
contribution is the efficient segmentation to combine the
modalities, considering both local information conveyed in
the chunks and global information achieved by combining the
chunk-level representations.

II. RELATED WORK

In general, one of the main challenges in emotion recogni-
tion and sequence-to-one tasks is effectively handling varying
duration inputs. Previous studies have proposed to segment the
audio waveforms into chunks for speech emotion recognition
(SER) [7]-[10]. Studies have also expanded this method
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to audio-text applications [11], showing the importance of
synchronizing the two modalities even when ignoring exact
lexical boundaries. Properly temporally synchronizing both
modalities is critical to the performance of the multimodal
model.

In the audio-visual space, studies have proposed methods to
align speech to lips [12], [13]. An approach is to dynamically
adjust the timing between the two modalities instead of
utilizing a constant shift [13]. AlignNet [14] improved on this
strategy by creating an end-to-end trainable model that also
utilized time warping to align video and audio temporally.

Past research has focused mainly on time warping to align
audio-visual modalities. However, this approach requires com-
putational overhead and inherently distorts the modalities. In
contrast, when deploying chunk segmentation, training and
inference times can be reduced [8], and we can avoid the need
to distort the modalities.

When it comes to using chunks, studies have explored the
most effective way to aggregate the segments after passing
them through deep learning models. Some proposed strategies
use mean pooling, a gated network, a recurrent neural network
(RNN) attention mechanism, and self-attention [8]. In the
past, these studies focused on chunking inputs for RNNs and
convolutional neural networks (CNNs).

Transformers have gained significant popularity [15]. Scaled
dot-product attention can provide a rich understanding of the
input by focusing on different parts of the input sequence [16].
More recently, studies have used cross-attention to enable one
modality to influence another by cross-attending over the se-
quence lengths of each modality’s backbone, as demonstrated
in [17]. However, transformers have a downside. Their com-
putational cost grows quadratically with the sequence length
[16]. Several studies have attempted to reduce their complexity
[18]-[21], but they all resulted in a reduction in performance.
Research has been conducted on utilizing chunking in order
to reduce computational overhead of transformers; however,
these efforts have largely focused on unimodal tasks and
transformers [22]. In contrast, we explore these strategies
when applied to a cross-attention-based multimodal trans-
former architecture. Our approach investigates the benefits of
cross-attending over chunks of video instead of the original
sequence lengths to facilitate the fusion of the audio and visual
modalities while reducing the computational cost.

III. PROPOSED APPROACH

This paper proposes an audio-visual model that chunks the
visual input, the more computationally intensive modality, into
predetermined segment lengths and fuses the two modalities
by cross-attending over these chunks, as shown in Fig. 1. This
approach allows us to retain temporal information of both
modalities even when there is a vast difference in sequence
lengths.

The chunking method we deploy is dynamic in nature [8].
We predefine the chunk length and number of chunks and
then evenly space out these chunks across the modality’s
input. Since the computational cost of scaled dot-product
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Fig. 1. Overview of our proposed audio-visual architecture using chunk-based
segmentation. The blue branches represent the visual information, the red
branches represent the acoustic information, and the purple branches represent
the fused audio-visual information. The visual input is chunked before the
visual backbone. The sequence length of both modalities is C' when passed
into the cross-attention module. The cross-attention module attends over the
chunks instead of the standard sequence lengths of the backbones’ outputs.

attention grows quadratically with respect to the sequence
length [16], we can use dynamic chunking to control and
reduce the effective sequence length without requiring us to
discard temporal information.

Let L be the length of the input sequence, m be the fixed
length of each chunk, and C be the number of chunks to
create. The step size, A, between the start of each chunk
varies between samples (assuming the samples have different
durations) and is given by:

A{LmJ 0

Cc-1

For the i-th chunk, where ¢ € [0, ..., C], the start index, s;,
which marks the beginning of the -th chunk, is calculated as:

si=1ixA 2

Similarly, the end index, e;, which indicates the end of the
i-th chunk, is calculated as:

ei=8+tm=ixA+m 3)

Since each sequence is split into chunks, the visual modal-
ity’s effective batch size is increased by a factor of C'. We then
pass the inputs through the respective unimodal backbones.
Specifically, we use MARLIN [23] to handle the visual input,
which is an encoder for facial video representations. We
also use WavLM [24] to process the raw audio waveforms,
which is a speech self-supervised learning (SSL) encoder.
The output of the visual encoder is mean-pooled over the
sequence dimension and then reshaped to make the chunks
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the new sequence dimension, with a sequence length of C,
to which cross-attention will be applied, as shown in Fig. 1.
This approach reduces the visual modality’s batch size to its
original size. We use adaptive average pooling to adjust the
sequence length of the output of the speech encoder to C' to
match the visual modality.

We utilize a cross-attention architecture [25] to facilitate
information transfer between the modalities. We share the
query vectors (()) from one modality (My) with the multi-
head attention (MHA) [16] layer of the other modality (M).
The cross-attention mechanism is formalized as:

Qur, Ky "
Vdo

I'={Qwm Knmyr Varo }

In (4), Ky, and V), are the key and value matrices of
modality My, Qas, is the query matrix of modality M;, and
dy is the dimensionality of the key vectors. This mechanism
effectively enables the fusion of information from both modal-
ities, leveraging the temporal and contextual nuances captured
in their respective segments.

The cross-attention process is repeated for five iterations.
Then, the outputs go through five self-attention layers where
the query matrix is not shared between modalities, allowing
each modality’s sequence to attend to itself. We apply mean
pooling to combine the sequences for each modality, where
each position’s representation has been updated based on its
relationship with all the other positions in the sequence by the
self-attention layers, effectively aggregating the chunks. For
final classification, the pooled outputs are concatenated and
then passed through a multilayer perceptron (MLP).

Cross-Attn (T") = softmax ( ) Vo 4)

where,

IV. EXPERIMENTAL SETTINGS
A. Database

The database we utilized in our experiments is the CREMA-
D corpus [6]. CREMA-D is an audio-visual emotional dataset
comprising data from 91 multi-ethnic actors aged 20 to 74.
The actors were instructed to perform sentences expressing
different emotions (disgust, anger, fear, happiness, sadness, or
neutrality). The database contains 7,442 unique videos. A total
of 2,443 annotators analyzed the videos and rated the emotions
of each clip. In our experiments, we used the ratings provided
by the annotators when they were given both the visual and
the audio components of each clip. We utilized the plurality
rule to determine the emotion of a clip. The data splits used
during experimentation were speaker-independent.

B. Backbones

We used the pre-trained version of the base model WavLM
[24] from Hugging Face [26] as the audio encoder and the
base version of MARLIN [23] for the visual encoder. For
each trial we ran on the multimodal models, we fine-tuned the
backbones separately on each trial’s training set, ensuring that
our multimodal models were not influenced by the evaluation
or testing sets (the trial setups will be further discussed in

TABLE I
SUMMARY OF CHUNKING METHODS AND THEIR RESPECTIVE GAPS OR

OVERLAPS

Method # of Chunks  Gap/Overlap (%)

Chunking 1 4 Gap: 50

Chunking 2 5 Gap: 12.5

Chunking 3 6 Overlap: 10

Chunking 4 8 Overlap: 35.7

Chunking 5 10 Overlap: 50

Note: Gap/overlap refers to the size of the gaps/overlaps between chunks as
a proportion of the total duration of a single chunk for the average clip.

Section IV-E). We fine-tuned both backbones using Low-Rank
Adaptation (LoRA) [27] deployed with the parameter-efficient
fine-tuning (PEFT) library [28]. For the LoRA parameters, we
used a rank of 32, an alpha of 64, and a dropout of 0.05.
For WavLM, we injected the LoRA layers into the query, key,
value, and output projections, as well as the intermediate dense
and output dense layers. We trained WavLM on 30 epochs
with a batch size of 32 using the AdamW optimizer [29] with a
learning rate of 0.00005. For MARLIN, we injected the LoRA
layers into the query, key, value, and output projections. We
trained MARLIN on 30 epochs with a batch size of 16 using
the Adam [30] optimizer with a learning rate of 0.0001.

C. Baseline

For the baselines, we did not apply chunking to the inputs
for either modality. We modified MARLIN’s [23] encoder
to use zero-padded masking to handle videos of different
lengths in the absence of chunking. The audio encoder was
left unchanged, as the pre-trained WavLM model [24] from
Hugging Face [26] is already configured to handle masking
by default.

For Baseline 1, we replaced the proposed five cross-attention
layers with five self-attention layers. For Baseline 2, we
retained the five cross-attention layers but attended to both
backbones’ original sequence lengths in the cross-attention
layers instead of using chunks. As a result, the baselines have
the same number of parameters as our proposed method.

D. Chunking Methods

In this study, we explored five different chunking strategies,
which are summarized in Table 1. For the visual modality, we
selected a chunk length of 2 frames to align the sequence
length with the audio encoder. For the audio modality, we did
not utilize chunking due to its lower computational overhead.
The audio backbone relies heavily on a more extended tempo-
ral range for feature extraction, whereas the visual backbone
can effectively utilize spatial information from a single frame.
Furthermore, the chunks were evenly distributed across the
video, ensuring both modalities are synchronized in time.

We kept the chunk length constant and varied the number
of chunks to assess how the number of chunks impacts the
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TABLE II
PERFORMANCE METRICS FOR DIFFERENT ARCHITECTURES: MICRO AND
MACRO F1 SCORES, MACRO PRECISION, AND MACRO RECALL

Architecture  Micro F1  Macro F1  Prec. Rec.
Baseline 1 0.763 0.711 0.729 0.717
Baseline 2 0.769 0.720 0.727 0.726
Chunking 1 0.793*f 0.752+t 0.758*t  0.760*t
Chunking 2 0.793*% 0.750*f 0.759*T  0.759*1
Chunking 3 0.793*% 0.750*t 0.757*t  0.758*t
Chunking 4 0.788*% 0.743*f 0.751*F  0.748*t
Chunking 5 0.755 0.715 0.724 0.724

*

and T indicate statistically significant improvements over Baseline 1 and
Baseline 2, respectively, based on a two-tailed t-test with p < 0.05.

cross-attention mechanism’s ability to extract crucial temporal
information between the two modalities.

E. Training

We trained each multimodal system for 20 trials, with 20
epochs per trial and a batch size of 16. We used the Adam [30]
optimizer with a learning rate set at 0.0001. Both backbones
were frozen when experimenting with the fused architectures
to ensure fairness. We train all the models with the same
partitions. The partitions are random splits of the CREMA-
D dataset [6] such that all the data of each actor belong
to the training, evaluating, or testing sets. Furthermore, we
shared seeds across architectures to eliminate variability due
to randomness. This approach ensures that any difference
in performance between the architectures is due to the ar-
chitectures themselves and not influenced by random factors
such as weight initialization or data shuffling. For reference,
the training times and memory usage were analyzed using
the same Nvidia RTX 4090. We used PyTorch’s built-in
cuda.max_memory_allocated function to retrieve the
GPU memory required for each architecture.

V. EXPERIMENTAL RESULTS

We compare the classification performance of our proposed
chunking strategies with Baseline 1’s and Baseline 2’s results.
Table II shows that most of the chunking settings evaluated
in this study outperform the baselines. Notably, The strategies
for Chunking 1, Chunking 2, Chunking 3, and Chunking 4
show statistically significant improvements over the baselines,
demonstrating the effectiveness of these approaches. For our
best performing chunking method, Chunking 1, we see a 3.9%
improvement in micro F1 score, 5.8% in macro F1 score,
4.0% in macro precision, and 6.0% in macro recall when
compared to Baseline 1. Compared to Baseline 2, we see a
3.1% improvement in micro F1 score, 4.4% in macro F1 score,
4.2% in macro precision, and 4.7% in macro recall.

As can be seen by Chunking 5 in Table II, excessive overlap
leads to a noticeable decrease in performance compared to
Baseline I and Baseline 2. We hypothesize that the redundancy
introduced by overlap creates noise in the fused representation,

TABLE III
GPU MEMORY REQUIRED AND TRAINING TIMES FOR DIFFERENT
ARCHITECTURES

Architecture  Memory Training Time
Baseline 1 18.887 GB 122 sec/epoch
Baseline 2 18.809 GB 120 sec/epoch
Chunking 1 7.848 GB 75 sec/epoch
Chunking 2 7.865 GB 88 sec/epoch
Chunking 3 7.889 GB 92 sec/epoch
Chunking 4 7.923 GB 108 sec/epoch
Chunking 5 7.958 GB 122 sec/epoch

as the model encounters the same features multiple times. This
repetition effectively amplifies their perceived importance dur-
ing the attention mechanisms of both the cross-attention and
self-attention layers. Consequently, the model may overfocus
on the repetitive parts of the input sequence while neglecting
potentially more informative sections.

We also compared the efficiency of our proposed chunking
strategies with Baseline 1 and Baseline 2, as shown in Ta-
ble III. It is important to note that the number of trainable
and non-trainable parameters is the same for all architectures
tested. For our best performing chunking method, Chunking
1, we see a 58.4% reduction in GPU memory required when
compared to Baseline 1 and a 58.3% reduction in GPU mem-
ory needed when compared to Baseline 2. Furthermore, we see
a 38.5% reduction in training time compared to Baseline I and
a 37.5% reduction in training time compared to Baseline 2.
This analysis confirms our hypothesis that chunking the inputs
of the computationally intensive modality and cross-attending
over these chunks instead of the entire sequence length of the
backbones significantly decreases the computational overhead
and resources required by our proposed approach.

VI. CONCLUSIONS

This paper proposes a chunking method specifically tai-
lored for cross-attention-based multimodal transformer ar-
chitectures. The approach focuses on chunking the visual
modality, which is the more computationally intensive com-
ponent in audio-visual emotion recognition tasks. The video
is split into segments, enabling cross-attention with audio
over these chunks rather than relying on the standard se-
quence lengths of the outputs of the unimodal backbones. Our
approach demonstrates significant improvements over con-
ventional cross-attention methods in the audio-visual domain
in the context of emotion recognition using the CREMA-D
database. By segmenting video, our method leverages greater
temporal information from the visual modality, thereby en-
hancing the effectiveness of the cross-attention mechanism and
reducing computational overhead.

We can extend this method to other multimodal systems.
Our strategy is more effective in scenarios where we need
to accommodate modalities with a significant disparity in
computational overhead for the same amount of temporal
information.
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