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Simple Summary: Lip and oral cavity cancer caused over 177,000 deaths globally in 2020, but patient
survival increases with earlier diagnosis. One barrier to early diagnosis is the invasive nature of
biopsies needed for diagnosis. Automated diagnosis systems have the potential to perform non-
invasive diagnosis by pairing novel imaging data with deep learning models. Given the variability
between patients, access to a sufficiently large training database from human subjects limits deep
learning applications. We propose a model that maps non-invasive images of oral tissue to a diagnosis
by encouraging the model to group normal samples close together (reducing variability between
patients). Our model improves non-invasive oral cancer diagnosis through a robust training process
that only requires a small amount of data. This work shows how we can address small data challenges
through model architecture and training, rather than through the collection of larger databases or
manual corrections and normalizations.

Abstract: Background: Multispectral autofluorescence lifetime imaging systems have recently been
developed to quickly and non-invasively assess tissue properties for applications in oral cancer
diagnosis. As a non-traditional imaging modality, the autofluorescence signal collected from the
system cannot be directly visually assessed by a clinician and a model is needed to generate a diag-
nosis for each image. However, training a deep learning model from scratch on small multispectral
autofluorescence datasets can fail due to inter-patient variability, poor initialization, and overfitting.
Methods: We propose a contrastive-based pre-training approach that teaches the network to perform
patient normalization without requiring a direct comparison to a reference sample. We then use the
contrastive pre-trained encoder as a favorable initialization for classification. To train the classifiers,
we efficiently use available data and reduce overfitting through a multitask framework with mar-
gin delineation and cancer diagnosis tasks. We evaluate the model over 67 patients using 10-fold
cross-validation and evaluate significance using paired, one-tailed t-tests. Results: The proposed
approach achieves a sensitivity of 82.08% and specificity of 75.92% on the cancer diagnosis task
with a sensitivity of 91.83% and specificity of 79.31% for margin delineation as an auxiliary task. In
comparison to existing approaches, our method significantly outperforms a support vector machine
(SVM) implemented with either sequential feature selection (SFS) (p = 0.0261) or L1 loss (p = 0.0452)

Cancers 2024, 16, 4120. https:/ /doi.org/10.3390/ cancers16234120

https://www.mdpi.com/journal/cancers


https://doi.org/10.3390/cancers16234120
https://doi.org/10.3390/cancers16234120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-0060-7315
https://orcid.org/0000-0002-4075-4072
https://doi.org/10.3390/cancers16234120
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16234120?type=check_update&version=2

Cancers 2024, 16, 4120

20f19

when considering the average of sensitivity and specificity. Specifically, the proposed approach
increases performance by 2.75% compared to the L1 model and 4.87% compared to the SFS model. In
addition, there is a significant increase in specificity of 8.34% compared to the baseline autoencoder
model (p = 0.0070). Conclusions: Our method effectively trains deep learning models for small
data applications when existing, large pre-trained models are not suitable for fine-tuning. While we
designed the network for a specific imaging modality, we report the development process so that
the insights gained can be applied to address similar challenges in other non-traditional imaging
modalities. A key contribution of this paper is a neural network framework for multi-spectral fluores-
cence lifetime-based tissue discrimination that performs patient normalization without requiring a
reference (healthy) sample from each patient at test time.

Keywords: multispectral autofluorescence lifetime imaging; automated cancer diagnosis; margin
delineation; patient normalization; regularization; deep learning

1. Introduction

In 2020, lip and oral cancer caused over 177,000 deaths globally [1]. In particular, coun-
tries with lower human development indices (HDIs) saw increased incidence and mortality
rates for lip and oral cancer [1]. Efforts to develop automated oral cancer classifiers result
from the clinical need to easily and reliably classify oral lesions, especially in low HDI
regions. Both margin delineation (classification of lesion tissue versus healthy tissue) and
diagnosis (classification of lesion tissue as benign or malignant) have clinical relevance.
While diagnosis classifiers are useful for determining if treatment or resection is required,
margin delineation classifiers are useful in image-guided surgery to ensure the margin of
the lesion is removed during resection. We are interested in multispectral fluorescence lifetime
imaging (maFLIM) since this imaging modality is fast and non-invasive. In contrast to
whole-slide images and mobile camera images (RGB format), we note that maFLIM images
in our domain provide in vivo metabolic and biochemical information in the form of three
biexponential-like decays per pixel. As a result, commonly used medical image processing
architectures such as U-Net [2] and networks pre-trained on ImageNet (e.g., [3-5]) cannot
simply be fine-tuned for our application. Similarly, typical data augmentation methods
such as scaling, flipping, or rotation do not apply to our domain.

A key challenge in developing an automated diagnosis or delineation classifier in
maFLIM is the variability of oral lesions. Within lesions of the same class, tissue charac-
teristics from different patients may differ due to the lesion location (e.g., tongue versus
tonsil) [6]. In addition, oral cancers are associated with a variety of different risk factors,
including human papillomavirus (HPV) and tobacco use [7]. To reduce inter-patient vari-
ability, some authors have proposed incorporating a reference (healthy) and suspicious
(potentially malignant) example for each patient [8,9]. Adversarial methods have also been
used to reduce inter-patient variability [10]. One patient normalization approach in our
domain calculates features for the healthy and suspicious images and uses the difference of
each feature’s healthy and suspicious values as the input to a classifier [8,9]. Outside of a
reference value for patient normalization, the healthy samples are not typically used when
training networks for oral cancer diagnosis [8,9]. Similarly, margin delineation approaches
may only compare malignant and healthy samples, discarding the benign images [11,12].

In this work, we explore two main questions: (1) Can we achieve a reduction in
inter-patient variability without direct correspondence between healthy and suspicious
images from each patient? (2) Can we combine the two clinically relevant tasks of margin
delineation and cancer diagnosis in a beneficial way? Our method consists of two steps:
contrastive pre-training followed by the addition of two task classifiers. Samples from three
classes are used: benign, malignant, and healthy. The contrastive pre-training step trains
an encoder that embeds each pixel such that pixels from the same class cluster together,
away from pixels from a different class (see bottleneck representation in Figure 1). Through
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the contrastive pre-training, we force the encoder to focus on characteristics specific to the
class, rather than specific to a particular patient. Instead of normalizing each lesion feature
by subtracting a paired healthy feature value, our approach uses contrastive learning
to create patient-invariant representations of each image, whether healthy or suspicious.
Through our patient normalization, we reduce inter-patient variability without any direct
pairing between a patient’s healthy and suspicious images. In addition to the contrastive
pre-training, we add task classifiers for the margin delineation and diagnosis tasks. The
multitask framework provides enough regularization to the network to avoid the use of an
autoencoder as reported in Caughlin et al. [13] and allows both clinically relevant tasks to
be accomplished with the same encoder.
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Figure 1. Approach overview. Step 1 (A-C)—input pixel-level training data (see example pixel panels
(B,F)) into the encoder and train using contrastive loss. After step 1 pre-training, the bottleneck
representation shows the clustering of each class (see bottleneck representation Panel (G)). Step
2 (D,E)—add pixel-level classifiers and train with categorical cross-entropy losses. Aggregate all
pixel-level labels from a single image using a 50% threshold to label each image.

Our approach improves diagnosis performance in comparison to competitive baselines.
In addition, our network achieves good performance on the margin delineation task, even
though delineation is treated as an auxiliary task within our framework. Our results
show that training a multitask model can help regularize the training process for several
clinically relevant tasks, while contrastive learning can reduce inter-patient variability (a
key challenge in automated medical tasks). Our full cancer diagnosis model achieves a
sensitivity of 82.08% and a specificity of 75.92%. The improvements over baselines range
from 1.46% to 4.87% considering the average of sensitivity and specificity. In summary, the
primary contributions of our work are implicit patient normalization using a contrastive
pre-training step and further regularization through a novel multitask network for margin
delineation and cancer diagnosis of oral lesions.

The rest of the paper is organized as follows: Section 2 describes related work in terms
of maFLIM classification, contrastive learning, and multitask learning. Section 3 details
the loss functions and training process. Section 4 analyzes the contrastive loss function
and model performance, including baseline comparison and model analysis. Section 5
summarizes the results and suggests further research directions.

2. Related Work
2.1. Classification Approaches in maFLIM

Tasks for automated classification of oral lesions using maFLIM include margin de-
lineation and cancer diagnosis. In margin delineation, the task is to distinguish between
healthy tissue versus cancerous tissue. In cancer diagnosis, the task is to determine if a
lesion is benign or cancerous. Each task is typically treated separately using a machine
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learning approach, with variations on lifetime and intensity features input into each clas-
sifier. For example, Duran et al. [11] evaluated support vector machines (SVMs), quadratic
discriminant analysis (QDA), and ensemble approaches on the margin delineation task. They
used only healthy, cancerous, and pre-cancerous training data, without incorporating any
images from benign lesions, and did not consider the cancer diagnosis task. Jo et al. [8] used
similar classifiers for the cancer diagnosis task, where the classifiers were trained on patient-
normalized features from benign, cancerous, and pre-cancerous lesions. While healthy
samples were not included as a separate class, the patient normalization step required each
patient in both the training set and the testing set to have two images: one of the lesion
and one of the healthy tissue [8]. Similarly in the skin cancer domain, Vasanthakumari et
al. [9] used SVM, QDA, and linear discriminant analysis (LDA) classifiers trained with phasor
features for cancer diagnosis of skin lesions.

Transitioning to deep learning approaches, Marsden et al. [6] implemented a pre-
trained convolutional neural network (CNN) for the margin delineation task. In cancer
diagnosis, we previously introduced an autoencoder and classifier approach [13]. However,
our previous work only considered the benign and cancerous or pre-cancerous samples
during training and applied no patient normalization. While our approach improved
classification performance over machine learning baselines, the addition of patient nor-
malization could increase classification performance. While patient normalization could
be accomplished in a variety of ways, we focus on a contrastive pre-training step without
direct correspondence between healthy and lesion images from the same patient.

2.2. Contrastive Learning Background

The primary objective of typical contrastive losses is to map the input to a space where
the distances between samples are meaningful for a task [14-17]. The variations consist of
differences in the number of positive and negative examples used (i.e., pairs, triplets, or
N-pairs) or in the way that samples are grouped (i.e., from class labels, data augmentations,
or temporal separation).

Considering the number of positives and negatives, Chopra et al. [18] described a loss
function based on a Siamese network, where a sample was contrasted with either a positive
or a negative example using the L1 distance. The model learned to map images of the same
person into a space where the images are close together. Images of different people were
mapped to a space where the distance between the images was large [18]. In addition to the
positive pair in Chopra’s contrastive loss, the triplet loss also considers a negative example
for each input [14,15]. The triplets consist of a sample (the anchor), an example from the
same class as the anchor (the positive), and an example from a different class (the negative).
Weinberger et al. [14] and Schroff et al. [15] used triplets of samples in a hinge-based loss.
In the hinge loss approach, the model is penalized when the distance between two samples
with different labels does not exceed the distance between two samples of the same label by
a margin [14,16]. In Weinberger et al. [14], the triplets were formed using the k neighbors,
and an additional term was added to cluster the anchor and positive example.

Following contrastive and triplet losses, Sohn [16] introduced the N-pair loss. The
N-pair loss modifies the triplet loss to consider N-1 negative samples for each anchor [16].
By using more negative examples, the loss is less dependent on hard negative mining,
shows faster convergence, and leads to improved performance [16]. Moving further,
Khosla et al. [17] introduced a loss function for contrastive pre-training using class labels.
Their formulation uses the class labels of the samples in each batch to form positives
and negatives, where each positive example in the batch and each negative example in
the batch contributes to a sample’s loss. Using a two-stage training process, the results
from Khosla et al. [17] showed that a contrastive pre-training step improves classification
performance over a single cross-entropy classifier training stage, even though both steps
are fully supervised.

In the medical imaging domain, various losses and pairs strategies have been ex-
plored [10,19-21]. Choudary et al. [20] used a triplet loss for image quality assessment
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(IQA) on whole slide images, starting with a pre-trained CNN. Contrastive learning using
different images from the same patient has been used for X-ray images [21]. Similarly,
augmentations of the same signal have been used for contrastive learning in electroencephalo-
gram (EEG) and electrocardiogram (ECG) tasks [10]. Both of these frameworks used the
InfoNCE loss [10,21]. Goswami et al. [19] used losses similar to ours to reduce inter-patient
variability in leukemia classification. The authors trained on a dataset of images from mi-
croscopes, enabling the use of a standard CNN architecture pre-trained on ImageNet [19].
We note that raw maFLIM data are not compatible with pre-trained CNNs from natural
images, so novel approaches are needed, especially with reduced training data.

2.3. Multitask Learning Background

Rather than training on a single task, multitask learning uses a shared hidden layer
that connects to more than one task. Caruana [22] showed that training with more than
one task simultaneously improves generalization and allows for the learning of different
features. The specific formulation of these extra tasks varies; they could involve predicting
features present in the training set but absent in the test set [22]. The extra tasks could also
involve predicting future values [22]. In these formulations, the extra tasks are used solely
to guide training [22]. Alternatively, all the training tasks could be utilized during both
training and testing phases [22].

In our case, we used two related tasks: margin delineation and cancer diagnosis.
In general, we found that the margin delineation (distinction between malignant versus
healthy) is easier than the classification task (distinction between malignant versus benign).
In a setting where some tasks are easier than others, Caruana hypothesized that the easier
tasks can help identify relevant features that the more difficult task might struggle to
learn [22]. The multitask framework can also learn features that neither task alone would
identify [22]. Finally, multitask learning also uses small datasets efficiently because more
information is available during training on multiple tasks (called “data amplification” by
Caruana [22]).

In the bioimaging domain, various multitask formulations have led to improvements
in automated cancer diagnosis [23-25]. Seo et al. [23] used multitask learning to automati-
cally locate tumors in lung or liver computed tomography (CT) images. The authors train a
CNN using as few as 48 images. They attributed the success of their method, in part, to the
increased regularization of the network from multitask training [23]. Similarly, Khosravan
and Bagci [24] trained a CNN on CT scans to find lung nodules and to determine if a
proposed region is a lung nodule (“false positive reduction”). The authors emphasize the
benefits of multitask learning for improved generalization, discriminative feature identifica-
tion, and training on small data [24]. Sainz et al. [25] used a multitask network to diagnose
breast cancer and to locate lesions and calcifications from mammograms.

While the same multitask learning insights apply to our research, we note that our
imaging modality is completely different from CT or mammography. Common imaging
modalities like CT and mammography show anatomical information and are typically
processed by the network on an image level. In contrast, maFLIM data primarily shows
functional information related to the tumor microenvironment. Furthermore, we input
pixel-level information into our network. As shown in Figure 1 Panel F, each pixel contains
a time-series sequence.

3. Materials and Methods
3.1. Motivation

Existing patient normalization approaches directly compare pairs of images from each
patient: a healthy reference sample and a suspicious/lesion sample. In contrast, we want
to incorporate patient normalization into the training process. The network will learn to
remove patient-specific characteristics and identify common class-specific features across
patients, without paired comparison of each patient to their reference sample. Ideally, the
contrastive pre-training step organizes the feature space such that each class groups together
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far from the other classes (see bottleneck representation, Figure 1). Building on the success
of multitask learning, we want to add classifiers that reduce overfitting and allow the
primary and auxiliary tasks to benefit from each other, leveraging a favorable initialization
from the pre-training step. We hypothesize that the contrastive plus multitask framework
will reduce inter-patient variability, smooth the decision boundaries, and regularize the
network to improve generalization without requiring two samples from each patient at test time.

3.2. Contrastive Pre-Training

As stated in a recent survey, “contrastive learning is an idea, not a specific model [26]".
While contrastive learning is often used to generate the representation of entire images,
the concept is not exclusive to images. It has been used in other modalities as well, such
as text summarization [27], graph data [28], and video [29]. We note that in contrastive
learning with images, the loss is generally applied to the embedding (hidden layer) rather
than directly to the image input [26]. Similarly, our encoder maps the 900-dimensional
pixel input (containing three biexponential decays in a single pixel) to a lower-dimensional
embedding where we can apply a contrastive loss. The contrastive loss reduces variability
by bringing the reference (normal) pixels closer together in the embedding space. We can
think of this process as a learned normalization. Fernando et al. [30] discussed how natural
variability and measurement variability in patient data lead to challenges in medical
anomaly detection, providing an example of patient endoscopy images that belong to
separate classes but are visually similar. Similarly, in the presence of high inter-patient
variability, the distance between an individual patient’s normal and lesion data may be
smaller than the distance between two different patients’ normal images. In this setting,
the model may reach a local optimum by overfitting to individual data points rather than
learning generalizable characteristics. Using the contrastive loss, we guide the model to
ignore patient-specific characteristics that are irrelevant to the task of cancer diagnosis.
This contrastive pre-training creates a better decision boundary, where the model learns
to focus on generalizable characteristics that differentiate cancer data from normal tissue
data. This is conceptually similar to forcing the model to view perturbations of the same
image as similar, where the perturbation here is the natural variability among patients of
the same class.

The pre-training step starts with an encoder (see Figure 1), which takes in unpaired
pixel-level data from three classes: healthy, benign, and malignant. We apply a contrastive
loss on the encoder embedding to train the network to cluster distinct classes. We optimize
the total contrastive loss, Lcontr, which consists of clustering terms and separation terms:

ﬁcontr = Eclust - ﬁsep (1)

where L, is the clustering loss we seek to minimize and Ly, is the separation loss we
seek to maximize (hence, the negative sign in Equation (1)). We chose a summation of
simple squared-error-based loss terms. While this strategy allows analysis of each loss term,
we note that other contrastive losses may provide additional improvement. The clustering
loss is given as follows:

£clust = Zac Z (Embanchor - Embpositive)2 (2)
Ne Npospt

N refers to the number of classes (three in our case) and Ny,sp refers to the number of
patients with the same class as the anchor. The anchor within a single class, Emby;;coy, is
the mean embedding of the class within the batch. An anchor-positive pair is formed by
taking the mean embedding of each same-class patient in the batch (Embysitive)-

The separation loss is similar, but compares the anchor embedding to embeddings
from the other classes:

ﬁSEP = EIBC Z (Embunchor - Embnegutive)z (3)
Ne Nnegpt
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where Embeentive is the mean embedding of the negative class patient within the batch.
a; and B. denote the weights of the clustering and separation losses, respectively, for an
anchor class c. We use an adaptive weighting of the losses, as described in Section 4.

3.3. Multitask Learning

Following contrastive pre-training, we add two task classifiers: a margin delineation
classifier and a diagnosis classifier (see Figure 1). The margin delineation classifier labels
pixels as lesion or healthy. For margin delineation, benign and malignant lesions are
grouped in a general “lesion” class. The diagnosis classifier labels pixels as benign or
malignant. During training, we group healthy samples with benign samples for the
diagnosis task.

The total loss for the multitask learning phase (L) is as follows:

Lyt = CEdiag + CEgetin + ﬁrﬁg 4)

where CEg;;e and CEgei are the cross-entropy losses for the diagnosis and delineation
classifiers, respectively. L. is a regularization loss that ensures consistency between the
two classifiers. Specifically, the regularization loss is a cross-entropy loss that penalizes
the network for labeling malignant samples differently. For example, we penalize cases
when the margin delineation classifier labels a malignant sample as “healthy”, but the
diagnosis classifier labels the same malignant sample as “malignant”). Similarly, healthy
tissue samples cannot simultaneously be cancerous, so any such predictions are penalized
by the regularization loss.

3.4. Biological Basis and Imaging System

Though there are many types of cancers, Hanahan and Weinberg [31] initially de-
scribed the development of cancer in 2000 as a collection of six basic cellular changes
that underlie the development of most cancers. These six basic changes, or “hallmarks of
cancer”, were updated in 2011 to include changes in cellular metabolism as a potential addi-
tional hallmark [32]. In 2022, Hanahan [33] adopted “deregulating cellular metabolism” as
an additional hallmark. As metabolic cofactors involved in oxidative phosphorylation and
glycolysis [34-36], NADH and FAD have been investigated as potential autofluorescence
biomarkers for pre-cancer or cancer by several studies (e.g., [37-39]).

Specifically for oral cancer, Sethupathi et al. [40] induced carcinogenesis using DMBA
in a hamster model and measured the NADH and FAD autofluorescence. The autofluo-
rescence values were used to calculate the redox ratio [40]. The redox ratio was compared
through the development of cancer, showing that the redox ratio decreases as the induced
lesions advance from normal to dysplasia to cancer [40]. In human cell lines, Shah et al. [41]
show increased NADH and FAD autofluorescence in cancerous cell lines compared to
normal cells with p-values < 0.05. Based on such insights, the imaging system excites
tissue in a single excitation band and collects the response from endogenous fluorophores
to quantify the optical characteristics of the tissue.

The collected data capture both the intensity of the response, as well as the temporal
dynamics as the fluorescence decays over time. The tissue autofluorescence is collected
in three emission bands (channels) corresponding to collagen, reduced nicotinamide ade-
nine dinucleotide (NADH), and flavin adenine dinucleotide (FAD). The optical properties of
collagen describe the structural characteristics of the tissue, which have been shown to
change with neoplastic transformation (e.g., extracellular matrix remodeling) [42]. NADH
and FAD autofluorescence can be used to calculate the optical redox ratio, which describes
the metabolic state of the tissue [43-46]. A lower redox ratio is associated with an in-
crease in cellular metabolism, which is an indicator of malignant transformation [47]. In
head and neck cancers, changes in tissue concentration of NADH and FAD have been
demonstrated [41,48,49]. The lifetime of the collected autofluorescence provides addi-
tional information about the tissue microenvironment, including protein binding changes
associated with cancer development [37,50].
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Further design details for the imaging system used for data collection have been
previously reported by Cheng et al. [51]. The temporal resolution is 0.25 ns and the field
of view (FOV) is a circular region with an approximate diameter of 1 cm. The system is a
single-excitation system, with a 355 nm excitation laser that exposes the tissue to only 2.8 m]
of energy. The amount of energy deposited to the tissue is within the maximum permissible
exposure (MPE) of 29.8 m] set by the American National Standards Institute (ANSI) [52].
The pulse width of the excitation laser is Ins. The resulting autofluorescence emission
is captured in three emission bands. The first band is 390 + 20 nm to capture collagen
autofluorescence. The second band is 452 + 22.5 nm to capture NADH autofluorescence.
The final emission band is >500 nm to capture FAD autofluorescence. The time required to
image is less than 3 s for each image. For each patient, we collect an image of the center of
the oral lesion and an image of normal-appearing tissue. We non-invasively image each
patient’s oral lesion before the biopsy. Following our imaging protocol, patients undergo
biopsies that are used to generate a pathology diagnosis for our ground-truth labels. The
raw data collected by the system is a biexponential-like fluorescence decay for each channel
at each pixel location (see Figure 1F).

3.5. Data and Preprocessing Steps

Our dataset consists of 67 lesion images and 67 healthy images, with an image size of
160 x 160 pixels (approx. 3.4 million pixels). The lesion diagnoses are as follows: 33 benign,
5 dysplasia, and 29 squamous cell carcinoma (SCC). For the classification tasks, we combined
dysplasia and SCC in the same group. Institutional review board approval for the study
was provided by Hamad Medical Corporation (Doha, Qatar). A detailed breakdown of
the lesion distribution by diagnosis and anatomical location is given in Table 1. Notably,
the dataset contains imbalance at both the diagnosis level (only five cases are diagnosed as
dysplasia) and at the anatomical location level (over half of the lesions are located in the
mucosa or tongue regions).

Cross-validation folds for a single trial were generated by randomly splitting the
images into 10 folds, preserving class balance as much as possible within each fold. Within
each run, we used 7 folds for the train set, 2 folds for the development set, and 1 fold for
the test set. We conducted ten runs for each trial, ensuring that each fold was used as
the testing set once per trial. We refer to the average results of all ten runs as a trial. We
repeated the random splits 10 times, resulting in a total of 10 trials (10 trials x 10 runs per
trial = 100 models).

Table 1. Lesion distribution in the database.

Location Benign Dysplasia SCC
Mucosa 10 3 9
Floor of Mouth 2 0 1
Gingiva 0 2 3
Lip 10 0 2
Mandible 0 0 1
Palate 1 0 0
Maxilla 0 0 1
Retromolar 1 0 0
Tongue 9 0 12
Total 33 5 29

Each image was pre-processed using median filtering with a sliding window across
pixels to increase the SNR. Median filtering with a sliding window increased the SNR but
retained the original image size (160 x 160 pixels). After median filtering, pixels with low
SNR were masked to exclude from training. At the pixel level, the first preprocessing step
involved signal inversion for each decay. Next, each channel was zero-padded to 300 sam-
ples (total network input of 3 channels x 300 samples per channel = 900-dimensional
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input). A calibration factor was applied to each channel to adjust for day-to-day variations
in the system. Finally, each pixel signal (concatenated decays of the three channels) was
normalized to sum to 100 to adjust for the different gains used during data collection.
Deconvolution of the instrument response from the raw fluorescence decay;, as typically
performed in FLIM data analysis, was not needed in the proposed framework. An example
of a pre-processed 3-channel decay, ready for input to the network, is shown in Figure 1
(example pixel).

3.6. Implementation

The specific structures for the encoder and classifiers are given in Figure 2. Each
layer has three components: a fully connected layer, internal regularization, and activation.
We used batch normalization in the encoder for regularization. Batch normalization has
been reported to smooth the training surface [53], speed training [53,54], and improve
generalization [53,54]. As described in Section 4, we also found that batch normalization
stabilizes the separation terms in our contrastive loss. We trained the encoder with the
contrastive loss given in Equation (1). We applied the loss to the fourth encoder layer after
batch normalization and before the rectified linear unit (ReLU) activation. We optimized
with Adam [55] (learning rate of 1 x 1072, batch size of 512). For additional stabilization,
we used gradient clipping at 0.25. We trained the encoder for 10 epochs and picked the
best model based on the development set. After the encoder was trained, we added the
task classifiers.
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Figure 2. The network structure of the proposed architecture.

In the task classifiers, we used dropout for regularization (p = 0.5). By randomly
removing nodes during training, dropout resulted in an ensemble-like model and reduced
overfitting [56]. We optimized Equation (4) using Adam [55] (learning rate of 1 x 1075,
batch size 256). The number of trainable parameters was 630,814 and the number of floating
point operations (FLOPS) was 0.00126 G. The model was trained for an additional five epochs,
with the best model selected based on the development set’s performance. Due to class
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imbalance (heavily biased toward the healthy class), we used sample weights calculated
based on the training distribution, employing the class weight from sci-kit learn [57].

The task classifiers are trained on the pixel level. However, we report results at the
image level. To determine the image-level label, we aggregate the labels of each pixel from
an image and use a 50% threshold, taking the majority label of the image’s pixels.

4. Results

The experiments in this section are organized as follows: contrastive loss function
validation (Section 4.1), contrastive encoder training (Section 4.2), full model evalua-
tion (Sections 4.3 and 4.4), and analysis of the contributions of the model’s components
(Section 4.5).

4.1. Loss Function Validation

We first used a toy example to understand how our loss function affected clustering
(see Figure 3). As we developed our method, the synthetic data functioned as a simplistic
simulation, where we had better control over the difficulty of the clustering task compared
with our actual data. In the actual data, we could not control noise levels or the distances
between classes. By gradually increasing the difficulty in synthetic data (starting with two
classes and moving to three classes), we learned to adaptively weight the loss components
and use batch normalization to achieve better clustering separation and keep the loss
components from diverging. We used the make moons tool from sci-kit learn [57] to generate
synthetic data and used dense layers with the contrastive loss function. Starting with a two-
class example (see Figure 3a), we can show that the loss function clusters each class together,
away from the other class (Figure 3b). Figure 3 also shows the results of each component of
the loss function. As expected, the clustering component effectively clustered a single class,
as seen in Figure 3c,d. The separation loss, however, presented more interesting behavior.
Without batch normalization, the separation loss diverged (Figure 3e,f). If we added a
batch normalization layer, the separation loss decreased in a controlled manner, and the
classes separated as expected (Figure 3g,h).

Next, we introduced a third class of synthetic data to determine if our loss function
could effectively separate three classes (Figure 4a). As shown in Figure 4b, only two classes
separated well when the loss components had a static weight set at the beginning of the
training. The training losses in Figure 5a show that one of the separation loss components
began to dominate, resulting in good separation between the purple class and the other
two. However, because the model received significant rewards for distancing the purple
class from the other two, the separation of the other two classes was ignored. To balance
the losses, we adaptively weighted the separation losses (8. from Equation (3)) inversely
proportional to the distance between the class means:

B 1
- diStA,Neg

Be (5)

where dist 4 Neg is the squared distance between the means of the anchor class and the
negative class. The weights are normalized such that they sum to one. The resulting
weighting for a loss component is larger if two classes are poorly separated, but decreases
as the separation increases. As shown in Figure 4c, the adaptive weighting strategy results
in separated classes with nearly equidistant cluster centers. In addition, the loss curves in
Figure 5b show that none of the separation loss components dominates.
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(a) (b) (0)

Figure 4. Contrastive training with three classes. All three classes were separable after using the
adaptive weighting scheme. (a) Synthetic 3 class training data. (b) Final result using clustering and
separation losses without adaptive weighting. (c) Final result using clustering and separation losses
with adaptive weighting.
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Figure 5. Loss functions for contrastive training with three classes. Each component of the loss
function is more stable with the adaptive weighting. (a) Training losses without adaptive weighting.
(b) Training losses with adaptive weighting.

4.2. maFLIM Contrastive Pre-Training

To visualize the progress of contrastive pre-training on maFLIM data, we used the
encoder and added a two-dimensional layer on which the contrastive loss operated (i.e.,
the dimension of the bottleneck representation was reduced from 16 to 2 for visualization).
We also monitored the silhouette score [58] of the two-dimensional representation using the
sci-kit learn implementation [57]. The silhouette score quantified the clustering performance
and can be calculated as follows:

g _B-4 ©)

max(A, B)

where A is the mean distance between a sample and all other points in the same class
and B is the mean distance between a sample and all other points in the next nearest
cluster. The range of the silhouette score is from —1 to 1. A negative value indicates
wrong assignments and a large positive value indicates high intra-class clustering and high
inter-class separation. We use the Euclidean distance as the distance metric, although any
distance metric may be used.

Figure 6 shows the 2D representations through contrastive training with the corre-
sponding silhouette score. The warm colors (yellows and oranges) represent the mean
embedding from patients with malignant lesions. The cool colors (blues and greens) rep-
resent the mean embedding from patients with benign lesions. The different shades in
the colors represent different patients. The circles, squares, and stars represent the mean
embedding from malignant, benign, and healthy images, respectively. For example, a
patient with a malignant lesion will have two points plotted on the graph: an orange or
yellow circle and a star in the same color.
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Figure 6. Two-dimensional (2D) contrastive feature space representation and silhouette scores during
pre-training. The shapes represent each class. The stars represent healthy samples. The circles
represent malignant samples. The squares represent benign samples. The cool colors represent
samples from patients with benign lesions, while the warm colors represent samples from patients
with malignant lesions. The shades of warm and cool colors help differentiate between tightly
clustered patients, but have no additional meaning.

Using these two-dimensional plots, we found that the weights for Equation (2) could
cause the representation space to collapse, resulting in all points clustering together, regard-
less of their class (i.e., the axes in the plots would span very little space). To prevent the
space from collapsing, we implemented an adaptive weighting scheme for the «, values
based on the silhouette score. As the silhouette score increased, indicating good clustering,
we gradually decreased the a, weight. The adaptive weighting enabled the data to cluster
quickly initially, but avoided instability due to dominance of the clustering term near the
end of the contrastive pre-training.

Figure 6a shows the representation before contrastive training, where there was no
separation between classes in two dimensions and the silhouette score was slightly negative.
As training progressed (Figure 6b), the 2D representation began to show distinct class
clustering and the silhouette score increased. As shown in Figure 6¢, after training, the
three classes were well clustered and the silhouette score neared 0.9. The contrastive
pre-training step successfully groups each class and creates distance between different
classes. In addition, Figure 6 shows that the silhouette score quantitatively describes the
quality of the clusters visually depicted on the two-dimensional graphs. In the experiments
that follow, we used the training set silhouette score to monitor training progress, as the
16-dimensional embedding in the full model cannot be directly visualized.

4.3. Diagnosis

We report the results of the full model (contrastive encoder plus multitask classifi-
cation) on the diagnosis task in Table 2. Although the diagnosis classifier was trained
using benign, malignant, and healthy samples, the evaluation was conducted only on the
lesion samples. We compare the full model to four baselines: SVM with SFS, SVM with
L1 regularization, an autoencoder model, and a multitask model. We have previously
reported results with the SVM and autoencoder methods [13], while the multitask baseline
enabled a more direct evaluation of the contrastive pre-training step. The multitask baseline
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refers to the full model without the contrastive pre-training step. On average, adding the
contrastive pre-training step improved the test performance by 2.33%, emphasizing the
effectiveness of our patient normalization step. In comparison to the autoencoder, the full
model showed an average improvement of 1.46%. In addition, the full model’s increase of
8.34% in specificity represents a statistically significant improvement over the autoencoder
method, as determined by a paired, one-tailed t-test (p = 0.0070). We note that the full
model achieved better performance despite training on fewer lesion images than the au-
toencoder method, which used training images from two domains. When we compare this
approach with the single-task SVM baseline proposed in Caughlin et al. [13], we observe
improvements ranging from 2.75% to 4.87%. Using the average of sensitivity and specificity
as a metric, a one-tailed, paired t-test shows a significant improvement over both SVM
methods. The p-value for the SVM SFS method was 0.0261, while the p-value for the SVM
L1 method was 0.0452. Although the full model outperformed all single-task baselines,
we cannot attribute the increase in performance solely to the multitask framework as the
multitask-only baseline does not perform better than the autoencoder baseline. Rather, the
combination of patient normalization and multitask training achieves the best performance.
We present an ablation study of the model components for the diagnosis task in Table 3.

Table 2. Diagnosis results. Full: contrastive pre-training with adaptive weights followed by
multitask learning with consistency loss. Multitask: no contrastive pre-training. AE: autoencoder and
a single-task classifier method. SVM SFS: support vector machine with sequential feature selection.
SVM L1: support vector machine with L1 regularization.

Model Sens. Spec. Avg. Prec. F1 Acc.
Full 82.08 75.92 79.00 76.92 78.07 78.81
Multitask 77.92 75.42 76.67 76.02 74.77 76.50
AE 87.50 67.58 77.54 76.25 79.80 77.62
SVM SFS 81.00 67.25 74.13 73.82 74.92 74.05
SVM L1 79.17 73.33 76.25 78.10 75.92 76.36

Table 3. Ablation results: diagnosis task. PT: pre-train. ACW: adaptive clustering weighting. CL:
consistency loss. MT: multitask learning. Avg.: average of sensitivity and specificity.

Task  Clust. PT Sep. PT ACW CL MT Sens. Spec. Avg.
v v v v v 82.08 75.92 79.00

v v v v 77.58 76.00 76.79

v v v 74.25 79.58 76.92

Diag. v 76.50 75.00 75.75
v v 77.92 75.42 76.67

v v v v 83.00 73.58 78.29

v v v 79.50 75.50 77.50

71.92 81.50 76.71

4.4. Margin Delineation

We evaluate the margin delineation classifier for two clinical use cases. The first case
is margin delineation between malignant and healthy tissue. This classifier would be used
when a patient has a known malignant lesion. The classifier would aid resection by showing
the clinician how much tissue to remove. The second case involves margin delineation
between a lesion (regardless of diagnosis) and healthy tissue. This classifier would be used
when a patient presents a suspicious lesion but has not undergone a biopsy or received
a confirmed diagnosis. By removing the entire lesion and ensuring the boundary is also
excised, the patient may not need to return for further resection, even if the diagnosis is
malignant. We anticipate that this task will be more challenging due to the difficulty in
distinguishing between benign and healthy tissue samples.
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As in the diagnosis case, the contrastive pre-training plus multitask framework (full
model) outperforms the multitask-only network by 0.6% to 3.4%. In addition, the full model
has good performance on both types of margin delineation, reducing the performance gap
between use cases from 6.17% to 3.37%. Although margin delineation is an auxiliary task
in our framework, Table 4 shows that the classifier achieves good performance on margin
delineation as well.

Table 4. Ablation results: margin delineation task. PT: pre-train. ACW: adaptive clustering
weighting. CL: consistency loss. MT: multitask learning. Avg.: average of sensitivity and specificity.

Task  Clust. PT Sep. PT ACW CL MT Sens. Spec. Avg.
v v v v v 91.83 79.31 85.57

v v v v 88.33 79.19 83.76

v v v 89.33 75.64 82.49

M-H v 88.33 82.31 85.32
v v 84.83 85.10 84.97

v v v v 91.33 79.76 85.55

v v v 90.50 80.22 85.36

89.83 80.98 85.41

v v v v v 85.10 79.31 82.20

v v v v 79.00 79.22 79.11

v v v 84.02 75.64 79.83

L-H v 75.36 82.31 78.83
v v 72.53 85.07 78.80

v v v v 80.72 79.76 80.24

v v v 80.24 80.22 80.23

80.76 80.98 80.87

4.5. Analysis of the Model’s Components

The performance of the network with various components removed (ablation study) is
shown in Tables 3 and 4. Comparing rows 1 and 4 for each task, the tables show that the con-
trastive pre-training step improves average performance across all tasks. The consistency
loss improves average diagnosis performance, our primary task, by 0.92% (see columns
2 and 3 in rows 4 and 5 of Table 3). When compared to single-task training, multitask
learning produced similar results on the diagnosis task. However, the performance is more
evenly balanced in terms of sensitivity and specificity in the multitask setting. Finally,
using adaptive clustering weights in the contrastive step improves performance by 2.21%
(columns 1 and 4 in rows 1 and 2 in Table 3).

5. Conclusions

Our multitask learning framework, enhanced with contrastive pre-training, improves
diagnosis performance across all baselines and also delivers good performance on margin
delineation as an auxiliary task. The contrastive step helps group the classes compactly
together, away from the other classes. This strategy aids patient normalization, without
requiring comparison to a reference sample for each patient at test time, and provides a
favorable initialization for multitask training. The multitask classifiers allow the margin
delineation task and diagnosis task training to benefit each other, further regularizing the
network and improving generalization.

A limitation of our work involves the size of the dataset. However, we included several
strategies to reduce potential problems with small data. Our pixel-level training process
resulted in many more samples for training. Due to the novel data format, our models
were trained at the pixel level rather than the image level. Since each image contained
160 x 160 pixels and we took images of each patient’s normal and lesion tissues, we had
160 x 160 x 2 = 51,200 pixels (samples) per patient before preprocessing. While we did
exclude some of these pixels during preprocessing based on SNR, using 51,200 pixels per
each of the 67 patients led to over 3.4 million pixels/samples. We note that our total patient
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count is comparable to related research using fluorescence lifetime imaging systems (e.g.,
the work by Marsden et al. [6], with 53 patients compared to our 67 patients). In the related
field of fluorescence lifetime imaging microscopy, several studies have used similar sample
sizes. In a lung cancer application of fluorescence lifetime imaging microscopy, Wang et al.
included a total of 31 patients in their study [59]. Ji et al. used a database of 71 patients
with fluorescence lifetime imaging microscopy data for a machine learning application in
cervical cancer risk [60].

In addition, we carefully designed our machine learning models to reduce bias in the
predictions given the smaller sample sizes in our database. In our baselines and proposed
methods, we used regularization methods to reduce overfitting and improve generalization.
In the SVM baseline, we used L1 regularization. L1 regularization encourages some
coefficients to go to zero, creating a simpler decision function that focuses on the most
relevant features. In our proposed method, we implemented multitask learning as a form
of regularization. In multitask learning, the network was constrained to find a solution that
satisfied both tasks, leading to more robust representations and classifiers. We also limited
the network size to reduce the likelihood of overfitting. Our feature extractor consists
of only four layers, and the classifier has just three layers, including the final two-node
classification layer. Finally, we meticulously applied a 10-fold cross-validation scheme and
repeated the experiments for 10 full trials, ensuring that our results are an average over
100 different models.

Although our analysis only considers regularization and patient normalization through
our contrastive pre-training, other automated medical tasks may benefit from similar ap-
proaches. For example, as datasets grow larger, our approach naturally extends to more
specific classes. We may be able to extend our multitask setting to consider different grades
of pre-cancer or to accommodate separate classes for different types of benign lesions. For
example, given the adequate dataset size, our approach could be easily modified to provide
a more specific diagnosis by adding additional clusters during pre-training that separate
SCC, mild, moderate, and severe dysplasia. Following pre-training, the multitask learning
framework could be modified to include additional outputs in the diagnosis classifier to
accommodate the more specific classes of dysplasia and cancer. Using the contrastive
approach may also improve domain generalization. Domain generalization is required for
clinical translation when a trained model is deployed in a new location. Taking inspiration
from the contrastive learning work in the natural image domain, (e.g., Kim et al. [61]), we
would like to extend our work to the multi-center setting, where multiple small datasets
from separate imaging centers need to be merged. In this setting, the clustering losses in
the contrastive pre-training step would encourage samples from the same class to group
compactly, regardless of domain shifts due to differences in imaging centers.
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