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Abstract—The performance of speech emotion recognition is
affected by the differences in data distributions between train
(source domain) and test (target domain) sets used to build and
evaluate the models. This is a common problem, as multiple
studies have shown that the performance of emotional classifiers
drop when they are exposed to data that does not match the
distribution used to build the emotion classifiers. The difference
in data distributions becomes very clear when the training
and testing data come from different domains, causing a large
performance gap between development and testing performance.
Due to the high cost of annotating new data and the abundance of
unlabeled data, it is crucial to extract as much useful information
as possible from the available unlabeled data. This study looks
into the use of adversarial multitask training to extract a common
representation between train and test domains. The primary task
is to predict emotional attribute-based descriptors for arousal,
valence, or dominance. The secondary task is to learn a common
representation where the train and test domains cannot be
distinguished. By using a gradient reversal layer, the gradients
coming from the domain classifier are used to bring the source
and target domain representations closer. We show that exploiting
unlabeled data consistently leads to better emotion recognition
performance across all emotional dimensions. We visualize the
effect of adversarial training on the feature representation across
the proposed deep learning architecture. The analysis shows that
the data representations for the train and test domains converge
as the data is passed to deeper layers of the network. We also
evaluate the difference in performance when we use a shallow
neural network versus a deep neural network (DNN) and the effect
of the number of shared layers used by the task and domain
classifiers.

Index Terms—Speech emotion recognition, adversarial train-
ing, unlabeled adaptation of acoustic emotional models.

I. INTRODUCTION

IN many practical applications for speech emotion recogni-
tion systems, the testing data (target domain) is different

from the labeled data used to train the models (source domain).
The mismatch in data distribution leads to a performance
degradation of the trained models [1]–[5]. Therefore, it is
vital to develop more robust systems that are more resilient
to changes in train and test conditions [6]–[9]. One approach
to ensure that models perform well on the target domain is to
use training data drawn from the same distribution. However,
this approach can be expensive, since it requires enough data
with emotional labels to build models specific to a new target
domain. A more practical approach is to use available labeled
data from similar domains along with unlabeled data from the
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Fig. 1: Formulation of the problem of data mismatch between
train (source domain) and test (target domain) datasets. Our
solution uses unlabeled data from the target domain to reduce
the differences between domains.

target domain, creating models that generalize well to the new
testing conditions without the need to annotate extra data with
emotional labels. This study proposes an elegant solution for
the problem of mismatch in train-test data distributions based
on domain adversary training.

We formulate the machine-learning problem as follows. We
have a source domain(s) with annotated emotional data, which
is used to train the models, and a large target domain with
unlabeled data (see Fig. 1). The testing data come from the
target domain. Due to the prohibitive cost of annotating new
data every time we change the target domain and the abun-
dance of unlabeled data, we aim to use the unlabeled target
data to extract useful information, reducing the differences
between the source and target domains. The envisioned system
generalizes better and is more robust by maximizing the
performance using a shared data representation for the source
and target domains. The key principle in our approach is to find
a consistent feature representation for the source and target
domains. Common approaches to address this problem include
feature transformation methods, where the representation of
the source data is mapped into a representation that resembles
the features in the target domain [10], and finding a common
representation between the domains, such that the features
are invariant across domains [11]–[13]. The common domain-
invariant features do not necessarily contain useful information
about the main task. Therefore, it is vital to constrain the
learned common feature representation to ensure that it is
discriminative with respect to the main task.

This paper explores the idea of finding a common repre-
sentation between the source and target domains, such that
data from the domains become indistinguishable while main-
taining the critical information used in emotion recognition.
This work is inspired by the work of Ganin et al. [14],
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which proposed training an adversarial multitask network. The
approach searches the feature space for a representation that
accurately describes the data from either domain, containing
the relevant information to accurately classify the main task,
in our study, the prediction of emotional attributes (arousal,
valence, and dominance). The discriminative and domain-
invariant features are learned by aligning the data distributions
from the domains through back-propagation. This approach
allows our framework to use unlabeled target data to learn a
flexible representation.

This paper shows that adversarial training using unlabeled
training data benefits emotion recognition. By using the abun-
dant unlabeled target data, we gain on average 27.3% relative
improvement in concordance correlation coefficient (CCC)
compared to just training with the source data. We evaluate the
effect of adversarial training by visualizing the similarity of the
data representation learned by the network from both domains.
The visualization shows that adversarial training aligns the
data distributions as expected, reducing the gap between the
source and target domains. The study also shows the effect
of the number of shared layers between the domain classifier
and the emotion predictor on the performance of the system.
The size of the source domain is an important factor that
determines the optimal number of shared layers in the network.
This novel framework for emotion recognition provides an
appealing approach to effectively leverage unlabeled data from
a new domain, generalizing the models and improving the
classification performance.

This paper is organized as follows. Section II discusses
previous work on speech emotion recognition, with emphasis
on frameworks that aim to reduce the mismatch between the
train and test datasets. Section III presents our proposed model,
providing the motivation and the details of the proposed frame-
work. Section IV presents the experiment evaluation including
the databases, network structure and acoustic features. Section
V presents the experimental results and the analysis of the
main findings. Section VI finalizes the study with conclusions
and future research directions.

II. RELATED WORK

The key challenge in speech emotion recognition is to build
classifiers that perform well under various conditions. The
mismatches in speech emotion recognition include speaker
variability in expressing affect, the emotional context of a
given interaction, the channel variability, and the acoustic
differences in the environment (e.g., noise, reverberation) [1].
Some of these challenges are unique to speech emotion recog-
nition, since they are not observed on other speech-based tasks
such as automatic speech recognition (ASR). For example,
while the ground truth can (almost always) be objectively
defined in ASR, this is not the case in speech emotion
recognition. The emotional labels to train models come from
perceptual evaluations, which are often noisy, reflecting the
differences in emotional perception of the evaluators [15]. It
is a very subjective problem as different people can perceive
different emotional content after listening to the same audio.
Speech emotion recognition systems have to deal with larger

speaker variability, beyond acoustic differences associated
with variation in the feature space. We express emotional
differently. One speaker may raise his/her fundamental fre-
quency while being angry, while another may speak faster.
Some speakers may partially mask their emotions due to social
conventions. Furthermore, contextual information plays a key
role in assessing the emotional content of a speech sample
[16]. For example, the emotional content in a political debate
is quite different from the emotional content in a colloquial
conversation between friends. All these challenges impact the
performance of speech emotion recognition systems when
they are tested on new domains (different speakers, different
content, different channels). A clear example of this problem
is the performance of cross-corpus evaluation (training in
one corpus, testing on another corpus). The cross-corpora
evaluation in Shami and Verhelst [17] demonstrated the drop
in classification performance observed when training on one
emotional corpus and testing on another. Other studies have
shown similar results [5], [18]–[22]. It is important to address
the drop in performance in the presence of these mismatches.

Several approaches have been proposed to solve this prob-
lem. Shami and Verhelst [17] proposed to include more
variability in the training data by merging emotional databases.
They demonstrated that it is possible to achieve classifica-
tion performance comparable to within-corpus results. More
recently, Chang and Scherer [23] showed that data from other
domains can improve the within-corpus performance of a
neural network. They employed deep convolutional generative
adversarial network (DCGAN) to extract and learn useful
feature representation from unlabeled data from a different
domain. This led to better generalization compared to a model
that did not make use of unlabeled data.

The main approach to attenuate the mismatch between
train and test conditions is to minimize the differences in the
feature space between both domains. Zhang et al. [24] showed
that by separately normalizing the features of each corpus,
it is possible to minimize cross-corpus variability. Hassan et
al. [25] increased the weight of the train data that matches
the test data distribution by using kernel mean matching
(KMM), Kullback-Leibler importance estimation procedure
(KLEIP), and unconstrained least-squares importance fitting
(uLSIF). Zong et al. [8] used least square regression (LSR)
to mitigate the projected mean and covariance differences
between the source data and unlabeled target samples while
learning the regression coefficient matrix. Because the learned
coefficient matrix depends on the samples selected from the
target domain, multiple matrices were estimated and used
to test new samples. Each matrix was used to predict an
emotional label for a test sample, combining the results with
the majority vote rule.

Studies have also explored mapping both train and test
domains to a common space, where the feature representation
is more robust to the variations between the domains. Deng
et al. [11] used auto-encoders to find a common feature
representation across the domains. They trained an auto-
encoder such that it minimized the reconstruction error on both
domains. Building upon this work, Mao et al. [26] proposed
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to learn a shared feature representation across domains by
constraining their model to share the class priors across
domains. Sagha et al. [27], also motivated by the work of
Deng et al. [11], used principal component analysis (PCA)
along with kernel canonical correlation analysis (KCCA) to
find views with the highest correlation between the source and
target corpora. First, they used PCA to represent the feature
space of the source and target data. Then, the features for the
source and target domains were projected using the PCA in
both domains. Finally, they used KCCA to select the top N
dimensions that maximized the correlation between the views.
Inspired by universum learning where unlabeled data is used
to regularize the training process for support vector machine
(SVM), Deng et al. [28] proposed adding an universum loss
to the reconstruction loss of an auto-encoder. The added loss
function was defined as the addition of the L2-margin loss
and the ✏-insensitive loss, making use of both labeled and
unlabeled data. This approach aimed to learn an auto-encoder
classifier that has low reconstruction and classification errors
on both domains.

Song et al. [29] proposed a couple of methods based on
non-negative matrix factorization (NMF) that utilize data from
both train and test domains. The proposed methods aimed to
represent a matrix formed by data from both domains as two
non-negative matrices whose product is an approximation of
the original matrix. The factorization was regularized by max-
imum mean discrepancy (MMD) to ensure that the differences
in the feature distributions of the two corpora were minimized.
The proposed methods aim to learn a robust low dimensional
feature representation using either unlabeled data or labels
as hard constraints on the problem. Abdelwahab and Busso
[6] proposed creating an ensemble of classifiers, where each
classifier focuses on a different feature space (each classifier
maximized the performance for a given emotion category). The
features were selected over the labeled data from the target
domain obtained with active learning. This semi-supervised
approach learned discriminant features for the target domain,
increasing the robustness against shifts in the data distributions
between domains.

Instead of finding a common representation between do-
mains, Deng et al. [30] trained a sparse auto-encoder on the
target data and used it to reconstruct the source data. This
approach used feature transformation in a way that exploits
the underlying structure in emotional speech learned from the
target data. Deng et al. [31] used two denoising auto-encoders.
The first auto-encoder was trained on the target data and the
second auto-encoder was trained on the source data, but it was
constrained to be close to the first auto-encoder. The second
auto-encoder was then used to reconstruct the data from both
the source and target domains.

Our proposed approach takes an innovative formulation with
respect to previous work relying on domain adversarial neural
network (DANN) [14]. Liao et al. [32] used domain adversarial
training in speech enhancement to learn noise invariant fea-
tures. Meng et al. [33] used multi-task adversarial training to
learn speaker invariant senone for ASR. They showed that ad-
versarial training was able to align the feature representations
of different speakers. Similarly, Wand and Schmidhuber [34]

used DANN to learn speaker invariant features for lipreading
achieving an average relative improvement of 40%. Wang
et al. [35] showed that domain adversarial training outper-
forms state of the art domain adaptation methods for speaker
recognition. Shinohara [36] showed that the use of DANN
can increase the robustness of an ASR system against certain
types of noise. Sun et al. [37] showed that domain adversarial
training helps the model to learn features that are stable
against accented speech. While these studies have showed
that adversarial training can help speech based tasks, this
framework has not been used with domains that have multiple
forms of mismatches such as speech emotion recognition (e.g.,
speaker, acoustic conditions and emotional content). This is
an important contribution as this framework can reduce the
mismatch between train and test sets in a principled way.
DANN relies on adversarial training for domain adaptation
to learn a flexible representation during the training of the
emotion classifier. As the training data changes, both the
emotion and domain classifiers readjust their weights to find
the new representation that satisfies all conditions. The domain
classifier can be considered as a regularizer that prevents the
main classifier from over-fitting to the source domain. The
final learned representation performs well on the target domain
without sacrificing the performance on the source domain.

III. PROPOSED APPROACH

A. Motivation
We present an unsupervised approach that reduces the

mismatch between source and target domains by creating a
discriminative feature representation that leverages unlabeled
data from the target domain.

We aim to learn a common representation between the
source and target domains, where samples from both domains
are indistinguishable to a domain classifier. This approach is
useful because all the knowledge learned while training the
classifier on the source domain is directly applicable to the
target domain data. We learn the representation by using a
gradient reversal layer (GRL) where the gradient produced
by the domain classifier is multiplied by a negative value
when it is propagated back to the shared layers. Changing
the sign of the gradient causes the feature representation of
the samples from both domains to converge, reducing the
gap between domains. Ideally, the performance of the domain
classifiers should be at random level where both domains
“look” the same. When such a representation is learned, the
data distributions of both domains are aligned. This approach
leads to a large performance improvement in the target domain,
as demonstrated by our experimental evaluation (see Section
V). A key feature of this framework is that it is unsupervised,
since it does not require labeled data from the target domain.
However, this framework would continue to be useful when
labeled data from the target domain is available, working as a
semi-supervised approach.

B. Domain Adversarial Neural Network for Emotion Recog-
nition

Ganin et al. [14], inspired by the recent work on genera-
tive adversarial networks (GAN) [38], proposed the domain
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Fig. 2: Architecture of the domain adversarial neural network
(DANN) proposed for emotion recognition. The network has
three parts: a feature representation common to both tasks, a
task classifier layer, and a domain classifier layer.

adversarial neural network (DANN). The network is trained
using labeled data from the source domain and unlabeled data
from the target domain. The network learns two classifiers:
the main classification task, and the domain classifier, which
determines whether the input sample is from the source or
target domains. Both classifiers share the first few layers that
determine the representation of the data used for classification.
The approach introduced a GRL between the domain classifier
and the feature representation layers. The layer passes the
data during forward propagation and inverts the sign of the
gradient during backward propagation. The network attempts
to minimize the task and domain classification errors. By
inverting the gradient coming from the domain classifier, the
network learns a representation that maximizes the error of
the domain classifier. By considering these two goals, the
model ensures a discriminative representation for the main
recognition task that makes the samples from either domain
indistinguishable.

Figure 2 shows an example of the DANN structure. The
network is fed labeled source data and unlabeled target data
in equal proportions. In our formulation, we propose to predict
emotional attribute descriptors as the primary goal. We train
the primary recognition task with the source data, for which we
have emotional labels. For the domain classifier, we train the
classifier with data from the source and target domains. Notice
that the domain classifier does not require emotional labels,
so we can rely on unlabeled data from the target domain. The
classifiers are trained in parallel. The network’s objective is
defined as:

E(✓f , ✓y, ✓d) =
1

n

nX

i=1

Li
y(✓f , ✓y)

� �
⇣ 1

n

nX

i=1

Li
d(✓f , ✓d) +

1

m

mX

i=1

Li
d(✓f , ✓d)

⌘ (1)

where ✓f represents the parameters of the shared layers pro-
viding the regularized feature representation, ✓y represents the
parameters of the layers associated with the main prediction
task, and ✓d represents the parameters of the layers of the
domain classifier (n is the number of labeled training samples,
m is the number of unlabeled training samples). The optimiza-
tion process consists of two loss functions. Li

y is the prediction
loss for the main task, and Li

d is the domain classification loss.
The prediction loss and the domain classification loss compete
against each other in an adversarial manner. The parameter �
is a regularization multiplier that controls the tradeoff between
the losses. This is a minimax problem. It attempts to find a
saddle point parametrized by ✓̂f , ✓̂y, ✓̂d,

(✓̂f , ✓̂y) = argmin
✓f ,✓y

E(✓f , ✓y, ✓̂d) (2)

✓̂d = argmax
✓d

E(✓̂f , ✓̂y, ✓d) (3)

At the saddle point, the classification loss on the source
domain is minimized and the domain classification loss is
maximized. The maximization is achieved by introducing a
GRL that changes the sign of the gradient going from the
domain classification layers to the feature representation layers
(see the white layer in Fig. 2). The updates taken on the
feature representation parameters are in opposite direction to
the gradient. With this approach, stochastic gradient descent
tries to make the features similar across domains, so what is
learned from the source domain remains effective for the target
domain without loss in performance.

The simple concept of choosing a representation that con-
fuses a competent domain classifier leads to models that
perform better in the target domain without impacting the
performance in the source domain. This approach is particu-
larly useful for emotion recognition, as most annotated corpora
come from studio settings that greatly differs from real-world
testing conditions. This unsupervised approach uses available
unlabeled data to align the distributions of both domains.
The aligned distributions lead to a common representation,
causing the domain classifier’s performance to drop to random
chance levels. The common indistinguishable representation
retains discriminative information learned during the training
of the models with data from the source domain. We improve
the classifier’s performance on the target domain without
having to collect new annotated data. This is an important
contribution in this field, taking us one step closer toward
robust speech emotion classifiers that generalize well in most
testing conditions.

IV. EXPERIMENTAL EVALUATION

We define the main task as a regression problem to esti-
mate the emotional content conveyed in speech described by
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the emotional attributes arousal (calm versus activated), va-
lence (negative versus positive), and dominance (weak versus
strong). This section describes the databases (Section IV-A),
the acoustic features (Section IV-B) and the specific network
structures (Section IV-C) used in the experimental evaluation.

A. Emotional Databases

The experimental evaluation considers a multi-corpus set-
ting with three databases. The source domain (train set)
corresponds to two databases: the USC-IEMOCAP [39] and
MSP-IMPROV [40] corpora. The target domain corresponds
to the MSP-Podcast [41] database.

1) The USC-IEMOCAP Corpus: The USC-IEMOCAP
database is an audiovisual corpus recorded from ten actors
during dyadic interactions [39]. It has approximately 12 hours
of recordings with detailed motion capture information care-
fully synchronized with audio (this study only uses the audio).
The goal of the data collection was to elicit natural emotions
within a controlled setting. This goal was achieved with two
elicitation frameworks: emotional scripts, and improvisation of
hypothetical scenarios. These approaches allowed the actors
to express spontaneous emotional behaviors driven by the
context, as opposed to read speech displaying prototypical
emotions [42]. Several dyadic interactions were recorded and
manually segmented into turns. Each turn was annotated
with emotional labels by at least two evaluators across emo-
tional attributes (valence, arousal, dominance). Dimensional
attributes take integer values that range from one to five. The
dimensional attribute of an utterance is the average of the
values given by the annotators. We linearly map the scores
between �3 and 3.

2) The MSP-IMPROV Corpus: The MSP-IMPROV
database is a multimodal emotional database recorded from
actors interacting in dyadic sessions [40]. The recordings were
carefully designed to promote natural emotional behaviors,
while maintaining control over lexical and emotional contents.
The corpus relies on a novel elicitation scheme, where two
actors improvised scenarios that lead one of them to utter
target sentences. For each of these target sentences, four
emotional scenarios were created to contextualize the sentence
to elicit happy, angry, sad and neutral reactions, respectively.
The approach allows the actor to express emotions as dictated
by the scenarios, avoiding prototypical reactions that are
characteristic of other acted emotional corpus. Busso et
al. [40] showed that the target sentences occurring within
these improvised dyadic interactions were perceived as more
natural than the read renditions of the same sentences. The
MSP-IMPROV corpus includes not only the target sentences,
but also other sentences during the improvisations that led
one of the actors to utter the target sentence. It also includes
the natural interactions between the actors during the breaks.

The corpus consists of 8,438 turns of emotional sentences
recorded from 12 actors (over 9 hours). The sessions were
manually segmented into speaking turns, which were an-
notated with emotional labels using perceptual evaluations
conducted with crowdsourcing [43]. Each turn was annotated
by at least five evaluators, who annotated the emotional content

in terms of the dimensional attributes arousal, valence, and
dominance. Dimensional attributes take integer values that
range from one to five. The consensus label assigned to each
speech turn is the average value of the scores provided by the
evaluators, which we linearly map between �3 and 3.

3) The MSP-Podcast Corpus: The MSP-Podcast corpus
is an extensive collection of natural speech from multiple
speakers appearing in Creative Commons licensed recordings
downloaded from audio-sharing websites [41]. Some of the
key aspects of the corpus are the different conditions in which
the recordings are collected, a large number of speakers,
and a large variety of natural content from spontaneous
conversations conveying emotional behaviors. The audio was
preprocessed removing portions that contain noise, music or
overlapped speech. The recordings were then segmented into
speaking turns creating a big audio repository with sentences
that are between 2.75 seconds and 11 seconds. Emotional
models trained with existing databases are then used to retrieve
speech turns with target emotional content. The candidate
segments were annotated with emotional labels using an
improved version of the crowdsourcing framework proposed
by Burmania et al. [43].

Each speech segment was annotated by at least five raters,
who provided scores for the emotional dimensions arousal,
valence and dominance using seven-Likert scales. The consen-
sus scores are the average scores assigned by the evaluators,
which are shifted such that they are in the range between
�3 and 3. The collection of this corpus is an ongoing effort.
This study uses 14,227 labeled sentences. From this set, we
use 4,283 labeled sentences coming from 50 speakers as our
test set, which is consistently used across conditions. For the
within corpus evaluation (i.e., training and testing in the same
domain), we define a development set with 1,860 sentences
from 10 speakers, and a train set with the remainder of
the corpus (8,084 sentences). This study also uses 73,209
unlabeled sentences from the audio repository of segmented
speech turns. The unlabeled segments are used to train the
domain classifier in the DANN approach.

B. Acoustic Features
The acoustic features correspond to the set proposed for

the INTERSPEECH 2013 Computational Paralinguistics Chal-
lenge (ComParE) [44]. This feature set includes 6,373 acoustic
features extracted at the sentence level (one feature vector
per sentence). First, it extracts 65 frame-by-frame low-level
descriptors (LLDs) which includes various acoustic character-
istics such as Mel-frequency cepstral coefficients (MFCCs),
fundamental frequency, and energy. The externalization of
emotion is conveyed through different aspects of speech
production so including these LLDs is important to capture
emotional cues. After estimating LLDs, a list of functions are
estimated for each LLD, which are referred to as high-level
descriptors (HLD) features. These HLDs include standard
deviation, minimum, maximum, and ranges. The acoustic
features are extracted using OpenSMILE [45].

We separately normalize the features from each domain
(i.e., corpus) to have zero mean and a unit standard devi-
ation. The mean and the variance of the data is calculated
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considering only the values of the features within the 5%
and 95% quantiles to avoid outliers skewing the values. After
normalization, we ignore any value greater than 10 times its
standard deviation by setting their values to zero.

C. Network Structure
As discussed in Section III-B, the DANN approach has

three main components: the domain classifier layers, task
classifier layers, and feature representation layers. The domain
classifier layers are implemented with two layers across all
the experimental evaluation. The task classifier layers are also
implemented with two layers, except for the shallow network
described below. The number of layers in the feature repre-
sentation layers is a parameter of the network that is set on
the development set. We consider different number of shared
layers, evaluating the performance of the system with one, two,
three or four layers. We fix the number of nodes per layers
to 256 nodes. This setting provides good performance on the
source domain. This parameter is consistently implemented in
all the structures evaluated in this paper.

We also study whether a simple shallow network can
achieve similar performance compared to the deep network. In
the shallow network, the task classifier layer and the feature
representation layer are implemented with one layer each. We
implement the domain classifier layer with two layers.

D. Baseline Systems
We establish two baselines. The first baseline is a network

trained and validated only on the source data. This condition
creates a mismatch between the train and test conditions.
The second baseline corresponds to within corpus evaluations,
where the models are trained and tested with data from the
target domain. This model assumes that training data from
the target domain is available, so it corresponds to the ideal
condition. The parameters of the networks are optimized using
the development set. The baselines are implemented with
similar architectures, serving as a fair comparison with the
proposed method (e.g., number of layers, number of nodes).
The key difference with the DANN models is the lack of the
domain classification layers, where the feature representation
layers only consider the primary classification task.

E. Implementation
We train the networks using Keras [46] with Tensorflow

as back-end [47]. We use batch normalization and dropout.
The dropout rates are p=0.2 for the input layer and p=0.5
for the rest of the layers. We further regularize the models
using max-norm on the weights of value four and a clip norm
on the gradient of value ten. The loss function used for the
main regression task is the mean square error (MSE). The loss
function for the domain classification task is the categorical
cross-entropy. We use Adam as an optimizer with a learning
rate of 5e�4 [48]. We train the models for 100 epochs with
a batch size of 256 sentences. A parameter of the DANN
model is � in Equation 1, which controls the trade-off between
the task and domain classification losses. We follow a similar

approach to the one proposed by Ganin et al. [14], where � is
initialized equal to zero for the first ten training epochs. Then,
we slowly increase its value until reaching � = 1 by the end
of the training. We train each model twenty times to reduce
the effect of initialization on the performance of the classifiers.
We report the average performance across the trials.

In adversarial training, we need unlabeled data to train
the domain classifier. We randomly select samples from the
unlabeled portion of the target domain to be fed to the domain
classifier. The number of selected samples from the audio
repository of unlabeled speech turns is equal to the number
of samples in the source domain, keeping the balance in the
training set of the domain classification task.

V. EXPERIMENTAL RESULTS

The performance results for the baseline models and the
DANN models are reported in terms of the root mean square
error (RMSE), Pearson’s correlation coefficient (PR), and con-
cordance correlation coefficient (CCC) between the ground-
truth labels and the estimated values. While we presented PR
and RMSE, the analysis focus on CCC as the performance
metric, which combines mean square error (MSE) and PR.
CCC is defined as:

⇢c =
2⇢�x�y

�2
x + �2

y + (µx � µy)2
(4)

where ⇢ is the Pearson’s correlation coefficient, �x and �y ,
and µx and µy are the standard deviations and means of the
predicted score x and the ground truth label y, respectively.

A. Number of Layers For the Shared Feature Representation
We first study the effect of the number of shared layers

between the domain classifier and the primary regression
task on the DANN model’s performance (e.g., feature rep-
resentation layers in Fig. 2). The domain and task classifier
layers are implemented with two layers each. We vary the
number of shared layers between the classifiers and observe
how the changes in feature representation affect the regression
performance. This evaluation is conducted exclusively on the
development set of the target domain (e.g., MSP-Podcast
corpus).

Table I shows the average RMSE, PR, and CCC for the
models trained with one, two, three and four shared layers.
For arousal, we consistently observe better performance (lower
RMSE and higher PR and CCC) with one shared layer between
the domain and task classifiers. For the CCC values, the
differences are statistically significant for all the cases, except
when the source domain is the MSP-IMPROV corpus and the
DANN model is implemented with two layers (one-tailed t-test
over the average across the twenty trials, asserting significance
if p-value < 0.05). The performance degrades as more shared
layers are added. For valence and dominance, the number of
shared layers that provides the best performance varies from
one corpus to another. In most cases, two or three shared layers
provide the best performance. Based on these results on the
development set, we set the number of shared layers for the
feature representation networks to one for arousal, two for
valence and three for dominance.
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TABLE I: Performance of DANN framework implemented
with different number of shared layers for the domain and task
classifiers [Iem: USC-IEMOCAP corpus, Imp: MSP-IMPROV
corpus, All: All corpora combined]

Arousal Valence Dominance
src n RMSE PR CCC RMSE PR CCC RMSE PR CCC

Iem

1 1.26 .412 .365 1.57 .140 .135 1.30 .151 .124
2 1.29 .379 .332 1.64 .152 .144 1.27 .160 .135
3 1.32 .353 .305 1.67 .150 .140 1.27 .217 .181
4 1.31 .347 .296 1.67 .147 .135 1.27 .192 .161

Imp

1 1.62 .497 .284 1.58 .171 .137 0.80 .485 .448
2 1.57 .506 .303 1.47 .203 .176 0.82 .514 .476
3 1.71 .399 .218 1.48 .202 .173 0.87 .478 .403
4 1.73 .382 .202 1.43 .210 .193 0.85 .442 .383

All

1 1.37 .432 .341 1.56 .181 .165 1.01 .395 .356
2 1.41 .396 .313 1.56 .173 .160 1.05 .345 .309
3 1.46 .369 .286 1.58 .183 .170 1.06 .339 .308
4 1.45 .371 .282 1.56 .161 .149 1.06 .307 .270

B. Regression Performance of the DANN Model

This section presents the regression results achieved by
the DANN model, and the baseline models. Table II lists
the performance for the within-corpus evaluation where the
models are trained and tested with data from the MSP-Podcast
corpus (referred to as target in the table), and the cross-
corpus evaluations, where the models are trained with other
corpora (referred to as src on the table). These baseline results
are compared with our proposed DANN method (referred to
as dann on the table). The results are tabulated in terms of
emotional dimensions and networks structures. These values
are the average of twenty trials to account for different
initializations and set of unlabeled data used to train the
DANN models. For the rows denoted “All Databases”, we
combine all the source domain together (IEMOCAP and MSP-
IMPROV corpora), treating them as a single source domain.
To determine statistical differences between the src and dann
conditions, we use the one-tailed t-test over the twenty trials,
asserting significance if p-value < 0.05. We highlight in bold
when the difference between these conditions is statistically
significant.

To visualize the results in Table II, we create figures
showing the average performance under different conditions
(Figs. 3-6). We use statistical significance tests to compare
different conditions (values obtained from Table II). We test
the hypothesis that population means for matched conditions
are different using one-tailed z-test. We assert significance if
p-value < 0.05. We use an asterisk in the figures to indicate
if there is a statistically significant difference relative to the
baseline model trained with the source domain.

Figure 3 shows the average concordance correlation coef-
ficient across emotional dimensions, training sources, trials,
and networks structures (three emotional dimensions ⇥ twenty
trials ⇥ three sources ⇥ five structures = 900 matched con-
ditions). The five structures correspond to four deep networks
with a varying number of shared layers (one, two, three and
four), and the shallow network. The average performance for
the within-corpus evaluation (target) is close to double the
performance for the cross-corpus evaluations (source). This re-
sult demonstrates the importance of minimizing the mismatch

TABLE II: Performance of the proposed DANN approach
across different structures and emotional dimensions.

Training Data Arousal

Source Approach deep shallow
RMSE PR CCC RMSE PR CCC

MSP-Podcast target 0.67 .786 .776 0.66 .787 .767

USC-IEMOCAP src 1.01 .515 .452 1.00 .510 .434
dann 1.10 .503 .489 1.07 .520 .503

MSP-IMPROV src 1.57 .551 .267 1.53 .555 .263
dann 1.48 .607 .381 1.46 .614 .381

All Databases src 1.20 .496 .386 1.18 .506 .378
dann 1.18 .555 .499 1.18 .551 .486

Training Data Valence

Source Approach deep shallow
RMSE PR CCC RMSE PR CCC

MSP-Podcast target 1.08 .327 .294 1.03 .344 .283

USC-IEMOCAP src 1.30 .202 .198 1.19 .227 .207
dann 1.44 .218 .215 1.34 .267 .255

MSP-IMPROV src 1.42 .142 .122 1.29 .154 .127
dann 1.43 .163 .161 1.37 .180 .178

All Databases src 1.33 .214 .201 1.16 .245 .228
dann 1.39 .299 .294 1.33 .272 .267

Training Data Dominance

Source Approach deep shallow
RMSE PR CCC RMSE PR CCC

MSP-Podcast target 0.57 .718 .697 0.57 .723 .704

USC-IEMOCAP src 0.95 .437 .393 0.87 .461 .426
dann 1.10 .437 .401 1.03 .497 .457

MSP-IMPROV src 0.86 .563 .368 0.87 .520 .353
dann 0.89 .565 .456 0.88 .578 .472

All Databases src 0.85 .481 .418 0.81 .493 .437
dann 0.92 .526 .499 0.90 .550 .516

*

*

Target Source DANN
0

0.1

0.2

0.3

0.4

0.5

0.6

cc
c

Fig. 3: Average concordance correlation coefficient across con-
ditions. The DANN models provide significant improvements
over the baseline model trained with the source domain.

between train and test conditions in emotion recognition.
The figure shows that the proposed DANN approach greatly
improves the performance, achieving 6.6% gain compared to
the systems trained with the source domains. As highlighted
by the asterisk, the improvement is statistically significant.
The proposed approach reduces the gap between within-corpus
and cross-corpus emotion recognition results, effectively using
unlabeled data from the target domain.

Figure 4 shows the average concordance correlation coef-
ficient for each emotional dimension (twenty trials ⇥ three
sources ⇥ five structures = 300 matched conditions). On
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Fig. 4: Average concordance correlation coefficient across
conditions for each emotional dimension.

USC-IEMOCAP MSP-IMPROV All Databases
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cc
c *

*

*

Target
Source
DANN

Fig. 5: Average concordance correlation coefficient across
condition for each source domain. The solid line represents
the within corpus performance.

average, the figure shows that models trained using DANN
consistently outperform models trained with the source data.
The asterisk denotes that the differences are statistically sig-
nificant across all emotional dimensions. The relative im-
provements over the source models are 22.8% for arousal,
33.4% for valence and 15.5% for dominance. In general, the
values for CCC are lower for valence, validating findings from
previous studies, which indicated that acoustic features are less
discriminative for this emotional attribute [49].

Figure 5 shows the average concordance correlation co-
efficient per source domain (three emotional dimensions ⇥
twenty trials ⇥ five structures = 300 matched conditions). The
figure shows the within-corpus performance (target) with a
solid horizontal line. The results consistently show significant
improvements when using DANN. The relative improvements
in performance over training with the source domain are 7.7%
for the USC-IEMOCAP corpus, 36.4% for the MSP-IMPROV
corpus, and 25% when we combine all the corpora. Figure
5 also shows that, on average, combining all the sources
into one domain improves the performance of the systems in
recognizing emotions. Adding variability during the training of
the models is important, as also demonstrated by Shami and
Verhelst [17]. DANN models also benefit from adding vari-
ability. By leveraging the added data representations, DANN
models are able to find a common representation between the
domains without sacrificing the critical features relevant for

*

Target Source DANN
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0.3

0.4
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0.6

cc
c

Deep
Shallow

Fig. 6: Average concordance correlation coefficient across
conditions for deep and shallow structures.

(a) Domain classifier’s accuracy with active GRL.

(b) Domain classifier’s accuracy activating the GRL after 20 epochs.

Fig. 7: Domain classifier accuracy during the training process
of the DANN models (arousal model trained on the USC-
IEMOCAP corpus). The figures include results for the train
and development sets.

learning the primary task.
Figure 6 compares the performance for deep and shal-

low networks (see Section IV-C). The figure summarizes
the results for the within-corpus evaluations (target), cross-
corpus evaluations (source) and with our proposed DANN
model (three emotional dimensions ⇥ twenty trials ⇥ three
sources = 180 matched conditions). For the target models, we
observe significant improvements when using deep structures
over shallow structures. However, the differences are not
statistically significant for the source and DANN models.

C. Performance of Domain Classifier

While the focus of this study is on the prediction of
emotional attributes, studying the results on domain classi-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2018.2867099

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. XX, MARCH 2018 9

TABLE III: Performance of the domain classifier on the target
domain. The results correspond to accuracies in detecting
samples belonging to the target domain.

Source Target Test

Arousal
USC-IEMOCAP 71.2%
MSP-IMPROV 70.6%
ALL 46.8%

Valence
USC-IEMOCAP 60.2%
MSP-IMPROV 75/0%
ALL 54.0%

Dominance
USC-IEMOCAP 66.7%
MSP-IMPROV 72.5%
ALL 61.2%

fication can lead to further insights into the use of DANN in
speech emotion recognition. We consider the performance of
the domain classification during training. Figure 7 shows the
accuracy in detecting the source and target domains during
training as a function of epochs. The figure includes the
results on the train set, consisting of data from the source
and target domains, and on the development set, consisting of
data from the source domain. Figure 7a shows that the GRL
behaves as expected, where the performance of the domain
classifier converges to the chance level. We also re-implement
the approach without the GRL so the domain classifier is
trained to maximize its performance. After 20 epochs, we
activate the GRL. Figure 7b shows the results for the train
and development sets, where the vertical line indicates the
time when the GRL is activated. The figure shows that the
domain classifier’s performance increases during the first 20
epochs. After activating the GRL, the performance drops to
the chance level, as expected.

We also report the performance of the domain classifiers
on the test set. Since all the samples belong to the target
domain, any sample assigned to the source domain is a
mistake. The results are reported in the Table III. The domain
classifier recognizes data from the target domain with low
confidence reaching performance below 73%. We observe
that when the source domain consists of both databases (i.e.,
higher variability in the source domain), the domain classifier’s
performance is close to 50%, as expected.

D. Data Representation
The results in Tables I and II demonstrate the benefits of

using the proposed DANN framework. This section aims to
understand the key aspect of the DANN approach by visu-
alizing the feature representation created during the training
process.

We use the t-SNE toolkit [50] to create 2D projections of the
feature distributions at different layers of the networks. t-SNE
is a popular data visualization technique to project high dimen-
sional data into a smaller subspace. The projection provides a
useful tool to visually inspect feature representations learned
by the model. t-SNE is built on stochastic neighbor embed-
ding. It attempts to minimize the Kullback-Leibler divergence
(KLD) between the low-dimensional embedding and the high-
dimensional data. This approach results in an embedding that
retains the local data structure while also revealing global
structures such as clusters of samples on different manifolds.
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(a) Feature representation using the DANN model
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(b) Feature representation using the baseline source
model

Fig. 8: Feature representation at the last shared layer for
arousal models trained on USC-IEMOCAP corpus. The figures
are created with the t-SNE toolkit.

Figure 8 shows the distributions of the data from the source
domain (blue circles) and the target domain (red crosses)
after projecting them in the feature representation created by
two models. This example corresponds to the models trained
for arousal using the USC-IEMOCAP corpus as the source
domain (as explained in Section V-A, the DANN model for
arousal has only one shared layer as a feature representation).
Figure 8a shows the data representation at the output of
the shared layer of the DANN model. Figure 8b shows the
data representation at the equivalent layer of the DNN model
trained with the source domain (i.e., the USC-IEMOCAP
database). By using adversarial domain training, the feature
distributions for samples from both domains are almost indis-
tinguishable, demonstrating that the proposed approach is able
to find a common representation. Without adversarial domain
training, in contrast, there are large regions in the feature
space where it is easy to separate samples from the source and
target domains. Figure 8b suggests the presence of a source-
target mismatch which affects the performance of the emotion
classifier.

We also explore the feature representation when the DANN
model is trained with four shared layers using the t-SNE
toolkit. The objective of this evaluation is to visualize the
distribution of the data in each of the shared layers. This
evaluation is implemented using the models for valence, using
the MSP-IMPROV corpus as the source domain. Figures 9a-9d
show the changes in the data representation for each of the four
shared layers in the DANN model. At the first layer (Fig. 9a),
the feature representations for the source data (blue circles)
and the target data (red crosses) are dissimilar enough for
the domain classifier to distinguish them. While the difference
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Fig. 9: Feature representation at each layer using the DANN model, and the baseline DNN trained with the source domain.
The figures are created with the t-SNE toolkit. The example corresponds to models for valence with four shared layers, using
the MSP-IMPROV corpus as the source domain. Figures (a)-(d) report the results for DANN model. Figures (e)-(h) report the
results for DNN trained with the source domain.

between domains in the feature representation has decreased
at the second layer (Fig. 9b), there are still some regions
dominated by samples from one of the two domains. At the
third layer (Fig. 9c), the feature representations of the domains
are similar enough to confuse the domain classifier. The
common representation is maintained in the fourth layer (Fig.
9d), where the data from the target domain is indistinguishable
from the data from the source domain. This final representation
is used by the emotion regression system to predict the
emotional state of the target speech. For comparison, we
also trained a baseline model with six layers, matching the
combined number of shared and task classifier layers in the
DANN model. Figures 9e-9h show the feature representation
of the corresponding first four layers of this model. In the
DANN model, the data representation of the samples from
the source and target domains become more similar in deeper
layers. This trend is not observed in the model trained with
only the source data. The DANN model effectively reduces the
mismatch in the feature representation across domains, which
leads to significant improvements in the regression models.

E. Analysis of Speaker Mismatch
As mentioned before, speaker variability is one of the

sources of mismatches in cross-corpus evaluations. The expec-
tation is that after training the DANN model, the representation
of the source data will be closer to the representation from
the target data. We explore this hypothesis in Figure 10,
which shows the feature embeddings of the source and DANN
models. After training the models, we project the samples
from the test set (target domain), which are highlighted in
black. These samples illustrate the data distribution of the
target domain on the corresponding embeddings. We consider
the data from two speakers in the development set of the
source domain (USC-IEMOCAP corpus). We project these
samples in both feature representations, highlighting speech
segments from the speakers in red and blue, respectively. The

source and DANN models have not been trained with data
from this set. Figure 10a shows that the data from the source
domain (red and blue points) is clustered when projected
on the embedding of the source domain. The clusters do
not necessarily match the distribution of the target domain
(black markers). Instead, Figure 10b shows that the source
domain data is more widespread and intertwined with the
target data when using the embedding of the DANN models.
These figures illustrate that the proposed approach reduces the
speaker mismatch in speech emotion recognition tasks.

VI. CONCLUSIONS

This study proposed an appealing framework for emotion
recognition that exploits available unlabeled data from the
target domain. The proposed approach relies on domain ad-
versarial neural network (DANN), which creates a flexible
and discriminant feature representation that reduces the gap
in the feature space between the source and target domains.
By using adversarial training, we learned domain invariant
representations that can effectively discriminate the primary
regression task. The model aims to find a balanced repre-
sentation that aligns the domain distributions, while retaining
crucial information for the primary regression task. The pro-
posed adversarial training leads to significant improvements in
the performance of emotion recognition classifier over models
exclusively trained with data from the source domain, which
was demonstrated by the experimental evaluation. We visual-
ized the data representation of both domains by projecting the
features into the shared layers of the proposed DANN model.
The results showed that the model converged to a common
representation, where the source and target domains became
indistinguishable. The experimental evaluation also showed
that the amount of labeled data from the source domain plays a
small role in determining how many shared layers are needed
between the domain and regression tasks. Since the number of
shared layers has a strong impact on the system’s performance,
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Fig. 10: Data projection of two speakers (red and blue points)
from the source domain in the embedding created by the (a)
source and (b) DANN models. The figure considers arousal
using the IEMOCAP corpus. The figure shows that samples
are better distributed in the embedding of the DANN model.

it is vital to identify the optimal number of shared layers, given
a specific source domain.

One challenging aspect in using the proposed approach is
the difficulty of training adversarial networks. For example,
Shinohara [36] noted that in ASR problems, the improvements
of DANN were large for some types of noises, but less
effective for others. They suggested that tuning the param-
eters could lead to better results. We also observed that the
framework failed to converge for certain parameters, which is
common in minimax problems. It is important to investigate
robust strategies to set the hyper-parameters of the model
that work in most scenarios. When properly trained, however,
this powerful framework can elegantly solve one of the most
important problems in speech emotion recognition: reducing
the mismatch between train and test domains.

There are many research directions to extend the proposed
approach. The current implementation relies on hand-crafted
features. The framework can be easily extended so the acoustic
features are directly learned during the training of the models
using convolutional neural networks (CNNs) (e.g., end-to-
end system). Likewise, studies have shown the benefit of
jointly predicting multiple emotional attributes using multi-
task learning (MTL) [5], [51]. We hypothesize that combining
these approaches with domain adversarial training would lead
to further improvements.

In the case of multiple sources, our approach seems to work
well when multiple sources are combined, treating them as
one. This approach forces the network to learn a representation
that is common across all the source domains. We hypothesize
that a better approach is to use asymmetric transformations,

where the model learns multiple possible representations for
the test data, creating one representation for each source.
During testing, the network chooses the most useful repre-
sentation for each data point. Another alternative approach is
to transform the available sources to match the target domains.
Finally, this unsupervised approach can be easily extended to
the cases where limited labeled data from the target domain
is available (semi-supervised approach), creating a flexible
framework to create emotion recognition systems that can
generalize across domain.
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